首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local hypoxia in tumors, as well as the short lifetime and limited action region of 1O2, are undesirable impediments for photodynamic therapy (PDT), leading to a greatly reduced effectiveness. To overcome these adversities, a mitochondria‐targeting, H2O2‐activatable, and O2‐evolving PDT nanoplatform is developed based on FeIII‐doped two‐dimensional C3N4 nanofusiform for highly selective and efficient cancer treatment. The ultrahigh surface area of 2D nanosheets enhances the photosensitizer (PS) loading capacity and the doping of FeIII leads to peroxidase mimetics with excellent catalytic performance towards H2O2 in cancer cells to generate O2. As such tumor hypoxia can be overcome and the PDT efficacy is improved, whilst at the same time endowing the PDT theranostic agent with an effective T 1‐weighted in vivo magnetic resonance imaging (MRI) ability. Conjugation with a mitochondria‐targeting agent could further increase the sensitivity of cancer cells to 1O2 by enhanced mitochondria dysfunction. In vitro and in vivo anticancer studies demonstrate an outstanding therapeutic effectiveness of the developed PDT agent, leading to almost complete destruction of mouse cervical tumor. This development offers an attractive theranostic agent for in vivo MRI and synergistic photodynamic therapy toward clinical applications.  相似文献   

2.
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image‐guided PDT. However, simultaneously achieving effective 1O2 generation, long wavelength absorption, and stable near‐infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1O2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation‐induced NIR emission and very effective 1O2 generation in aggregate state. The yielded nanoparticles show very effective 1O2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image‐guided photodynamic anticancer therapy.  相似文献   

3.
The luminous efficiency of inorganic white light‐emitting diodes, to be used by the next generation as light initiators, is continuously progressing and is an emerging interest for researchers. However, low color‐rendering index (Ra), high correlated color temperature (CCT), and poor stability limit its wider application. Herein, it is reported that Sm3+‐ and Eu3+‐doped calcium scandate (CaSc2O4 (CSO)) are an emerging deep‐red‐emitting material with promising light absorption, enhanced emission properties, and excellent thermal stability that make it a promising candidate with potential applications in emission display, solid‐state white lighting, and the device performance of perovskite solar cells (PSCs). The average crystal structures of Sm3+‐doped CSO are studied by synchrotron X‐ray data that correspond to an extremely rigid host structure. Samarium ion is incorporated as a sensitizer that enhances the emission intensity up to 30%, with a high color purity of 88.9% with a 6% increment. The impacts of hosting the sensitizer are studied by quantifying the lifetime curves. The CaSc2O4:0.15Eu3+,0.03Sm3+ phosphor offers significant resistance to thermal quenching. The incorporation of lanthanide ion‐doped phosphors CSOE into PSCs is investigated along with their potential applications. The CSOE‐coated PSCs devices exhibit a high current density and a high power conversion efficiency (15.96%) when compared to the uncoated control devices.  相似文献   

4.
Stimulated emission depletion (STED) nanoscopy is a typical super‐resolution imaging technique that has become a powerful tool for visualizing intracellular structures on the nanometer scale. Aggregation‐induced emission (AIE) luminogens are ideal fluorescent agents for bioimaging. Herein, long‐term super‐resolution fluorescence imaging of cancer cells, based on STED nanoscopy assisted by AIE nanoparticles (NPs) is realized. 2,3‐Bis(4‐(phenyl(4‐(1,2,2‐triphenylvinyl)phenyl)amino)phenyl) fumaronitrile (TTF), a typical AIE luminogen, is doped into colloidal mesoporous silica to form fluorescent NPs. TTF@SiO2 NPs bear three significant features, which are all essential for STED nanoscopy. First, their STED efficiency can reach more than 60%. Second, they are highly resistant to photobleaching, even under long‐term and high‐power STED light irradiation. Third, they have a large Stokes' shift of ≈150 nm, which is beneficial for restraining the fluorescence background induced by the STED light irradiation. STED nanoscopy imaging of TTF@SiO2‐NPs‐stained HeLa cells is performed, exhibiting a high lateral spatial resolution of 30 nm. More importantly, long‐term (more than half an hour) super‐resolution cell imaging is achieved with low fluorescence loss. Considering that AIE luminogens are widely used for organelle targeting, cellular mapping, and tracing, AIE‐NPs‐based STED nanoscopy holds great potential for many basic biomedical studies that require super‐resolution and long‐term imaging.  相似文献   

5.
Fluorescence‐imaging‐guided photodynamic therapy has emerged as a promising protocol for cancer theranostics. However, facile preparation of such a theranostic material for simultaneously achieving bright emission with long wavelength, high‐performance reactive oxygen species (ROS) generation, and good targeting‐specificity of cancer cells, is highly desirable but remains challenging. In this study, a novel type of far‐red/near‐infrared‐emissive fluorescent molecules with aggregation‐induced emission (AIE) characteristics is synthesized through a few steps reaction. These AIE luminogens (AIEgens) possess simple structures, excellent photostabilities, large Stokes shifts, bright emission, and good biocompatibilities. Meanwhile, their ROS generation is extremely efficient with up to 90.7% of ROS quantum yield, which is far superior to that of some popularly used photosensitizers. Importantly, these AIEgens are able to selectively target and ablate cancer cells over normal cells without the aid of any extra targeting ligands. Rather than using laser light, one of the presented AIEgens (MeTTPy) shows a remarkable tumor‐targeting photodynamic therapeutic effect by using an ultralow‐power lamp light (18 mW cm?2). This study thus not only extends the applications scope of AIEgens, but also offers useful insights into designing a new generation of cancer theranostics.  相似文献   

6.
Hybrid metal halides containing perovskite layers have recently shown great potential for applications in solar cells and light‐emitting diodes. Such compounds exhibit quantum confinement effects leading to tunable optical and electronic properties. Thus, broadband white‐light emission has been observed from diverse metal halides and, owing to high color rendering index, high thermal stability, and low‐temperature solution processability, these materials have attracted interest for application in solid‐state lighting. However, the reported quantum yields for white photoluminescence (PLQY) remain low (i.e., in the range 0.5–9%) and no approach has shown to successfully increase the intensity of this emission. Here, it is demonstrated that the quantum efficiencies of hybrid metal halides can be greatly enhanced if they contain a polymorph of the [PbX4]2? perovskite‐type layers: the [PbX4]2? post‐perovskite‐type chains showing a PLQY of 45%. Different piperazines lead to a hybrid lead halide with either perovskite layers or post‐perovskite chains influencing strongly the presence of self‐trapped states for excitons. It is anticipated that this family of hybrid lead halide materials could enhance all the properties requiring the stabilization of trapped excitons.  相似文献   

7.
DNA‐mediated assembly of core–satellite structures composed of Zr(IV)‐based porphyrinic metal‐organic framework (MOF) and NaYF4,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported. MOF NPs generate singlet oxygen (1O2) upon photoirradiation with visible light without the need for additional small molecule, diffusional photosensitizers such as porphyrins. Using DNA as a templating agent, well‐defined MOF–UCNP clusters are produced where UCNPs are spatially organized around a centrally located MOF NP. Under NIR irradiation, visible light emitted from the UCNPs is absorbed by the core MOF NP to produce 1O2 at significantly greater amounts than what can be produced from simply mixing UCNPs and MOF NPs. The MOF–UCNP core–satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.  相似文献   

8.
Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR‐II fluorescence imaging holds great promise for brain‐tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR‐II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR‐II fluorescent molecule with aggregation‐induced‐emission (AIE) characteristics is reported for orthotopic brain‐tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g?1 cm?1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c‐RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR‐I photoacoustic imaging with intrinsically deeper penetration than NIR‐II fluorescence imaging and, more importantly, precise tumor‐depth detection through intact scalp and skull. This research demonstrates the promise of NIR‐II AIE molecules and their dots in dual NIR‐II fluorescence and NIR‐I photoacoustic imaging for precise brain cancer diagnostics.  相似文献   

9.
5‐Aminolevulinic acid (ALA) is a widely used photodynamic therapy (PDT) prodrug in the clinic. It can be metalized to the photosensitizer PpIX, which produces toxic singlet oxygen to kill cancer cells upon visible light irradiation. Herein, a core/shell‐structured vehicle is designed to comprise magnetite colloidal supraparticles (MCSPs) as cores and ALA‐ZnII coordination polymers as shells (Fe3O4@ALA‐ZnII) for target pro‐photosensitizer delivery. The coordination polymers with 2D layered structures are locally deposited on the MCSPs by the complexation of the ALA and ZnII ions, and are readily controlled by varying the feed precursors and reaction temperatures. The maximum conjugated ALA amount is up to 17%. The Fe3O4@ALA‐ZnII microspheres exhibit pH‐sensitive release of ALA in acidic environment and rapid magnetic responsiveness. Cytotoxicity results demonstrate that Fe3O4@ALA‐ZnII shows a significant inhibitory effect to T24 cells and is nontoxic to 293T normal cells as exposed to the 630 nm visible light for a very short time, which may due to the selective accumulation of ALA‐induced PpIX in T24 cancer cells. Compared to the ALA used alone, the coordination polymer form is more efficient because of the bioactivity of incorporated Zn ions despite underlying the same apoptosis mechanism as ALA agent.  相似文献   

10.
Phototherapy is a promising treatment method for cancer therapy. However, the various factors have greatly restricted phototherapy development, including the poor accumulation of photosensitizer in tumor, hypoxia in solid tumor tissue and systemic phototoxicity. Herein, a mitochondrial‐targeted multifunctional dye‐anchored manganese oxide nanoparticle (IR808@MnO NP) is developed for enhancing phototherapy of cancer. In this nanoplatform, IR808 as a small molecule dye acts as a tumor targeting ligand to make IR808@MnO NPs with capacity to actively target tumor cells and relocate finally in the mitochondria. Meanwhile, continuous production of oxygen (O2) and regulation of pH induced by the high reactivity and specificity of MnO NPs toward mitochondrial endogenous hydrogen peroxide (H2O2) could effectively modulate tumor hypoxia and lessen the tumor subacid environment. Large amounts of reactive oxide species (ROS) are generated during the reaction process between H2O2 and MnO NPs. Furthermore, under laser irradiation, IR808 in IR808@MnO NPs turns O2 into a highly toxic singlet oxygen (1O2) and generates hyperthermia. The results indicate that IR808@MnO NPs have the high efficiency of specific targeting of tumors, relieving tumor subacid environment, improving the tumor hypoxia environment, and generating large amounts of ROS to kill tumor cells. It is expected to have a wide application in treating cancer.  相似文献   

11.
All‐inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion‐exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well‐controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light‐emitting diode (LED) is successfully prepared by the combination of a blue on‐chip LED device and the above perovskite mixture. The as‐prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color‐rendering index of Ra = 91, demonstrating their broad future applications in solid‐state lighting fields.  相似文献   

12.
Energy‐saving white lighting from the efficient intrinsic emission of semiconductors is considered as a next‐generation lighting source. Currently, white‐light emission can be composited with a blue light‐emitting diode and yellow phosphor. However, this solution has an inevitable light loss, which makes the improvement of the energy utilization efficiency more difficult. To deal with this problem, intrinsic white‐light emission (IWE) in a single solid material gives a possibility. Here, an all‐inorganic lead‐free CsCu2I3 perovskite single crystal (SC) with stable and high photoluminescence quantum yield (≈15.7%) IWE through strongly localized 1D exciton recombination is synthesized. In the CsCu2I3, the Cu–I octahedron, which provides most of electron states, is isolated by Cs atoms in two directions to form a 1D electronic structure, resulting a high radiation recombination rate of excitons. With this electronic structure design, the CsCu2I3 SCs have great potential in energy‐saving white lighting.  相似文献   

13.
Construction of high‐performance organic light‐emitting transistors (OLETs) remains challenging due to the limited desired organic semiconductor materials. Here, two superior high mobility emissive organic semiconductors, 2,6‐diphenylanthracene (DPA) and 2,6‐di(2‐naphthyl) anthracene (dNaAnt), are introduced into the construction of OLETs. By optimizing the device geometry for balanced ambipolar efficient charge transport and using high‐quality DPA and dNaAnt single crystals as active layers, high‐efficiency single‐component OLETs are successfully fabricated, with the demonstration of strong and spatially controlled light emission within both p‐ and n‐ conducting channels and output of high external quantum efficiency (EQE). The obtained EQE values in current devices are approaching 1.61% for DPA‐OLETs and 1.75% for dNaAnt‐based OLETs, respectively, which are the highest EQE values for single‐component OLETs in the common device configuration reported so far. Moreover, high brightnesses of 1210 and 3180 cd m?2 with current densities up to 1.3 and 8.4 kA cm?2 are also achieved for DPA‐ and dNaAnt‐based OLETs, respectively. These results demonstrate the great potential applications of high mobility emissive organic semiconductors for next‐generation rapid development of high‐performance single‐component OLETs and their related organic integrated electro‐optical devices.  相似文献   

14.
The combination of diagnostic and therapeutic functions in a single theranostic nanoagent generally requires the integration of multi‐ingredients. Herein, a cytotoxic near‐infrared (NIR) dye (IR‐797) and its nanoassembly are reported for multifunctional cancer theranostics. The hydrophobic IR‐797 molecules are self‐assembled into nanoparticles, which are further modified with an amphiphilic polymer (C18PMH‐PEG5000) on the surface. The prepared PEG‐IR‐797 nanoparticles (PEG‐IR‐797 NPs) possess inherent cytotoxicity from the IR‐797 dye and work as a chemotherapeutic drug which induces apoptosis of cancer cells. The IR‐797 NPs are found to have an ultrahigh mass extinction coefficient (444.3 L g?1 cm?1 at 797 nm and 385.9 L g?1 cm?1 at 808 nm) beyond all reported organic nanomaterials (<40 L g?1 cm?1) for superior photothermal therapy (PTT). In addition, IR‐797 shows some aggregation‐induced‐emission (AIE) properties. Combining the merits of good NIR absorption, high photothermal energy conversion efficiency, and AIE, makes the PEG‐IR‐797 NPs useful for multimodal NIR AIE fluorescence, photoacoustic, and thermal imaging‐guided therapy. The research exhibits the possibility of using a single ingredient and entity to perform multimodal NIR fluorescence, photoacoustic, and thermal imaging‐guided chemo‐/photothermal combination therapy, which may trigger wide interest from the fields of nanomedicine and medicinal chemistry to explore multifunctional theranostic organic molecules.  相似文献   

15.
MoS2 quantum dots (QDs)‐based white‐light‐emitting diodes (QD‐WLEDs) are designed, fabricated, and demonstrated. The highly luminescent, histidine‐doped MoS2 QDs synthesized by microwave induced fragmentation of 2D MoS2 nanoflakes possess a wide distribution of available electronic states as inferred from the pronounced excitation‐wavelength‐dependent emission properties. Notably, the histidine‐doped MoS2 QDs show a very strong emission intensity, which exceeds seven times of magnitude larger than that of pristine MoS2 QDs. The strongly enhanced emission is mainly attributed to nitrogen acceptor bound excitons and passivation of defects by histidine‐doping, which can enhance the radiative recombination drastically. The enabled electroluminescence (EL) spectra of the QD‐WLEDs with the main peak around 500 nm are found to be consistent with the photoluminescence spectra of the histidine‐doped MoS2 QDs. The enhanced intensity of EL spectra with the current increase shows the stability of histidine‐doped MoS2 based QD‐WLEDs. The typical EL spectrum of the novel QD‐WLEDs has a Commission Internationale de l'Eclairage chromaticity coordinate of (0.30, 0.36) exhibiting an intrinsic broadband white‐light emission. The unprecedented and low‐toxicity QD‐WLEDs based on a single light‐emitting material can serve as an excellent alternative for using transition metal dichalcogenides QDs as next generation optoelectronic devices.  相似文献   

16.
Highly luminescent–paramagnetic nanophosphors have a seminal role in biotechnology and biomedical research due to their potential applications in biolabeling, bioimaging, and drug delivery. Herein, the synthesis of high‐quality, ultrafine, europium‐doped yttrium oxide nanophosphors (Y1.9O3:Eu0.13+) using a modified sol–gel technique is reported and in vitro fluorescence imaging studies are demonstrated in human breast cancer cells. These highly luminescent nanophosphors with an average particle size of ≈6 nm provide high‐contrast optical imaging and decreased light scattering. In vitro cellular uptake is shown by fluorescence microscopy, which visualizes the characteristic intense hypersensitive red emission of Eu3+ peaking at 610 nm (5D07F2) upon 246 nm UV light excitation. No apparent cytotoxicity is observed. Subsequently, time‐resolved emission spectroscopy and SQUID magnetometry measurements demonstrate a photoluminescence decay time in milliseconds and paramagnetic behavior, which assure applications of the nanophosphors in biomedical studies.  相似文献   

17.
Photodynamic therapy (PDT) agent, which generates singlet oxygen (1O2) under light, has attracted significant attention for its broad biological and medical applications. Here, DNA‐driven shell–satellite (SS) gold assemblies as chiral photosensitizers are first fabricated. The chiral plasmonic nanostructure, coupling with cysteine enantiomers on its surface, exhibits intense chiroplasmonic activities (?40.2 ± 2.6 mdeg) in the visible region. These chiral SS nanoassemblies have high reactive oxygen species generating efficiency under circular polarized light illumination, resulting in a 1O2 quantum yield of 1.09. Meanwhile, it is found that SS could be utilized as PDT agent with remarkable efficiency under right circular polarized light irradiation in vitro and in vivo, allowing X‐ray computed tomography (CT) and photoacoustics (PA) imaging for tumors simultaneously. The achievements reveal that the enantiomer‐dependent and structure‐induced nanoassemblies play an important role in PDT effects. The present researches open up a new avenue for cancer diagnose and therapy using chiral nanostructures as multifunctional platform.  相似文献   

18.
Functionalized hydrogels have aroused general interest due to their versatile applications in biomaterial fields. This work reports a hydrogel network composed of gold nanoclusters linked with bivalent cations such as Ca2+, Mg2+, and Zn2+. The hydrogel exhibits both aggregation‐induced emission (AIE) and aggregation‐induced electrochemiluminescence (AIECL) effects. Most noteworthy, the AIECL effect (≈50‐fold enhancement) is even more significant than the corresponding AIE effect (approximately fivefold enhancement). Calmodulin, a Ca2+ binding protein, may efficiently regulate the AIECL dynamics after specific binding of the Ca2+ linker, with the linear range from 0.3 to 50 µg mL?1 and a limit of detection of 0.1 µg mL?1. Considering the important roles of bivalent cations in the life system, these results may pave a new avenue for the design of a biomolecule‐responsive AIECL‐type hydrogel with multifunctional biomedical purposes.  相似文献   

19.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

20.
Folate functionalized nanoparticles (NPs) that contain fluorogens with aggregation‐induced emission (AIE) characteristics are fabricated to show bright far‐red/near‐infrared fluorescence, a large two‐photon absorption cross section and low cytotoxicity, which are internalized into MCF‐7 cancer cells mainly through caveolae‐mediated endocytosis. One‐photon excited in vivo fluorescence imaging illustrates that these AIE NPs can accumulate in a tumor and two‐photon excited ex vivo tumor tissue imaging reveals that they can be easily detected in the tumor mass at a depth of 400 μm. These studies indicate that AIE NPs are promising alternatives to conventional TPA probes for biological imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号