首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize.  It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale.  相似文献   

2.
    
2D materials have a range of unique properties and are promising building blocks for the fabrication of macroscopic materials for many applications ranging from flexible electronics to energy storage devices. The development of effective methods to fabricate 2D material‐based macroscopic materials with designed structures is the key to enabling high performance. Lately, 3D printing has emerged as a new technique to assemble such materials. Compared to conventional fabrication methods, 3D printing techniques have a high degree of customization of the structure with a broad range of domain sizes from nanometers to centimeters, and thereby give the resulting products additional structure‐related functionalities. Recent advances in the fabrication of 2D material‐based macrostructures using 3D printing techniques and their uses in different fields are reviewed. Challenges and opportunities for the future development of the topic are also discussed.  相似文献   

3.
    
Phase engineering through chemical modification can significantly alter the properties of transition‐metal dichalcogenides, and allow the design of many novel electronic, photonic, and optoelectronics devices. The atomic‐scale mechanism underlying such phase engineering is still intensively investigated but elusive. Here, advanced electron microscopy, combined with density functional theory calculations, is used to understand the phase evolution (hexagonal 2H→monoclinic T′→orthorhombic Td) in chemical vapor deposition grown Mo1− x W x Te2 nanostructures. Atomic‐resolution imaging and electron diffraction indicate that Mo1− x W x Te2 nanostructures have two phases: the pure monoclinic phase in low W‐concentrated (0 < x ≤ 10 at.%) samples, and the dual phase of the monoclinic and orthorhombic in high W‐concentrated (10 < x < 90 at.%) samples. Such phase coexistence exists with coherent interfaces, mediated by a newly uncovered orthorhombic phase Td′. Td′, preserves the centrosymmetry of T′ and provides the possible phase transition path for T′→Td with low energy state. This work enriches the atomic‐scale understanding of phase evolution and coexistence in multinary compounds, and paves the way for device applications of new transition‐metal dichalcogenides phases and heterostructures.  相似文献   

4.
5.
    
Recent advances in emerging 2D nanomaterial‐based cellular materials (2D‐CMs) open up new opportunities for the development of next generation cellular solids with exceptional properties. Herein, an overview of the current research status of 2D‐CMs is provided and their future opportunities are highlighted. First, the unique features of 2D nanomaterials are introduced to illustrate why these nanoscale building blocks are promising for the development of novel cellular materials and what the new features of 2D nanoscale building blocks can offer when compared to their 0D and 1D counterparts. An in‐depth discussion on the structure–property relationships of 2D‐CMs is then provided, and the remarkable functions that can be achieved by engineering their cellular architecture are highlighted. Additionally, the use of 2D‐CMs to tackle key challenges in different practical applications is demonstrated. In conclusion, a personal perspective on the challenges and future research directions of 2D‐CMs is given.  相似文献   

6.
    
Graphene has unique water wetting properties, which have drawn great research interests recently. On the other side, water condensation and evaporation is a natural phenomenon in our daily life. Here, by combining the wetting properties of graphene and water condensation, a facile optical visualization approach is developed for graphene on a variety of substrates simply with the assistance of water vapor. Monolayer graphene becomes optically visible in several seconds with bellowing of water vapor. The wetting properties of monolayer graphene‐covered surface and uncovered surface on various substrates, including copper, pristine silicon (Si), HF‐treated Si, SiO2/Si, quartz, glass, polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), and micropatterned PDMS, are studied. It is shown that graphene is visible when it is not fully transparent to wetting for the underlying substrates. The different wetting behavior of graphene‐covered and uncovered surface leads to the difference in the distribution and morphology of water droplets, also gives rise to the interesting confining wall effect of the graphene edge, contributing to the observation of graphene. Moreover, this approach also enables distinguishing the monolayer and nonmonolayer graphene. This simple but powerful method is green, convenient, and repeatable, promising its great potential applications for graphene or other 2D materials.  相似文献   

7.
    
2D materials exhibit superior properties in electronic and optoelectronic fields. The wide demand for high-performance optoelectronic devices promotes the exploration of diversified 2D materials. Recently, 2D covalent organic frameworks (COFs) have emerged as next-generation layered materials with predesigned π-electronic skeletons and highly ordered topological structures, which are promising for tailoring their optoelectronic properties. However, COFs are usually produced as solid powders due to anisotropic growth, making them unreliable to integrate into devices. Here, by selecting tetraphenylethylene monomers with photoelectric activity, elaborately designed photosensitive 2D-COFs with highly ordered donor-acceptor topologies are in situ synthesized on graphene, ultimately forming COF-graphene heterostructures. Ultrasensitive photodetectors are successfully fabricated with the COFETBC–TAPT-graphene heterostructure and exhibited an excellent overall performance with a photoresponsivity of ≈3.2 × 107 A W−1 at 473 nm and a time response of ≈1.14 ms. Moreover, due to the high surface area and the polarity selectivity of COFs, the photosensing properties of the photodetectors can be reversibly regulated by specific target molecules. The research provides new strategies for building advanced functional devices with programmable material structures and diversified regulation methods, paving the way for a generation of high-performance applications in optoelectronics and many other fields.  相似文献   

8.
    
Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self‐powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built‐in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic‐driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H2) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy‐efficient sensors, providing an important advancement for future ubiquitous sensing.  相似文献   

9.
    
Any moving mechanical system consisting of sliding/rolling or rotating interfaces experiences friction and wear. High contact pressure and shear during relative movement of the sliding interfaces in the presence of lubricants often lead to interesting tribochemical activity at nanoscale, which then greatly influences the tribological performance of the mechanical systems at macroscale. Understanding these tribochemical interactions and to be able to manipulate them will be a key in designing smart solid lubricants that can self‐generate at the sliding interfaces and thus help in drastically improving the overall efficiency of these moving mechanical systems. In this study, it is demonstrated that solid lubricant consisting graphene mixed with iron nanoparticles (NPs) under high contact pressures at the sliding interface undergo tribochemical reaction leading to the formation of onion‐like‐carbon nanostructures (OLCs). Combining with atomistic molecular dynamic simulations, the tribochemical mechanism of formation of OLC with pure iron NPs and how that depends sensitively on the core–shell chemistry of the nanoparticle is elucidated. Interestingly, the formed OLCs lead to the near‐zero friction (superlubricity) during sliding in dry conditions, thus demonstrating great potential to be used as a solid lubricant for various tribological applications.  相似文献   

10.
    
Graphite's lubricating properties due to the “weak” interactions between individual layers have long been known. However, these interactions are not weak enough to allow graphite to readily exfoliate into graphene on a large scale. Separating graphite layers down to a single sheet is an intense area of research as scientists attempt to utilize graphene's superlative properties. The exfoliation and processing of layered materials is governed by the friction between layers. Friction on the macroscale can be intuitively understood, but there is little understanding of the mechanisms involved in nanolayered materials. Using molecular dynamics and a new forcefield, graphene's unusual behavior in a superlubric state is examined, and the energy dissipated between two such surfaces sliding past each other is shown. The dependence of friction on temperature and surface roughness is described, and agreement with experiment is reported. The accuracy of the simulated behavior enables the processes that drive exfoliation of graphite into individual graphene sheets to be described. Taking into account the friction between layers, a peeling mechanism of exfoliation is predicted to be of lower energy cost than shearing.  相似文献   

11.
Nanomaterials such as silver nanoparticles and graphene‐based composites are known to exhibit biocidal activities. However, interactions with surrounding medium or supporting substrates can significantly influence this activity. Here, it is shown that superior antimicrobial properties of natural shellac‐derived graphene oxide (GO) coatings is obtained on metallic films, such as Zn, Ni, Sn, and steel. It is also found that such activities are directly correlated to the electrical conductivity of the GO‐metal systems; the higher the conductivity the better is the antibacterial activity. GO‐metal substrate interactions serve as an efficient electron sink for the bacterial respiratory pathway, where electrons modify oxygen containing functional groups on GO surfaces to generate reactive oxygen species (ROS). A concerted effect of nonoxidative electron transfer mechanism and consequent ROS mediated oxidative stress to the bacteria result in an enhanced antimicrobial action of naturally derived GO‐metal films. The lack of germicidal effect in exposed cells for GO supported on electrically nonconductive substrates such as glass corroborates the above hypothesis. The results can lead to new GO coated antibacterial metal surfaces important for environmental and biomedical applications.  相似文献   

12.
13.
14.
15.
    
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

16.
    
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure–property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal–organic frameworks, covalent–organic frameworks, organic–inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron–matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.  相似文献   

17.
    
2D nanomaterials are finding numerous applications in next‐generation electronics, consumer goods, energy generation and storage, and healthcare. The rapid rise of utility and applications for 2D nanomaterials necessitates developing means for their mass production. This study details a new compressible flow exfoliation method for producing 2D nanomaterials using a multiphase flow of 2D layered materials suspended in a high‐pressure gas undergoing expansion. The expanded gas–solid mixture is sprayed in a suitable solvent, where a significant portion (up to 10% yield) of the initial hexagonal boron nitride material is found to be exfoliated with a mean thickness of 4.2 nm. The exfoliation is attributed to the high shear rates ( > 105 s?1) generated by supersonic flow of compressible gases inside narrow orifices and converging‐diverging channels. This method has significant advantages over current 2D material exfoliation methods, such as chemical intercalation and exfoliation, as well as liquid phase shear exfoliation, with the most obvious benefit being the fast, continuous nature of the process. Other advantages include environmentally friendly processing, reduced occurrence of defects, and the versatility to be applied to any 2D layered material using any gaseous medium. Scaling this process to industrial production has a strong possibility of reducing the cost of creating 2D nanomaterials.  相似文献   

18.
    
Graphene is a truly two‐dimensional atomic crystal with exceptional electronic and mechanical properties. Whereas conventional bulk and thin‐film materials have been studied extensively, the key mechanical properties of graphene, such as tearing and cracking, remain unknown, partly due to its two‐dimensional nature and ultimate single‐atom‐layer thickness, which result in the breakdown of conventional material models. By combining first‐principles ReaxFF molecular dynamics and experimental studies, a bottom‐up investigation of the tearing of graphene sheets from adhesive substrates is reported, including the discovery of the formation of tapered graphene nanoribbons. Through a careful analysis of the underlying molecular rupture mechanisms, it is shown that the resulting nanoribbon geometry is controlled by both the graphene–substrate adhesion energy and by the number of torn graphene layers. By considering graphene as a model material for a broader class of two‐dimensional atomic crystals, these results provide fundamental insights into the tearing and cracking mechanisms of highly confined nanomaterials.  相似文献   

19.
20.
    
Herein, the authors demonstrate a heterostructured NiFe LDH‐NS@DG10 hybrid catalyst by coupling of exfoliated Ni–Fe layered double hydroxide (LDH) nanosheet (NS) and defective graphene (DG). The catalyst has exhibited extremely high electrocatalytic activity for oxygen evolution reaction (OER) in an alkaline solution with an overpotential of 0.21 V at a current density of 10 mA cm?2, which is comparable to the current record (≈0.20 V in Fe–Co–Ni metal‐oxide‐film system) and superior to all other non‐noble metal catalysts. Also, it possesses outstanding kinetics (Tafel slope of 52 mV dec?1) for the reaction. Interestingly, the NiFe LDH‐NS@DG10 hybrid has also exhibited the high hydrogen evolution reaction (HER) performance in an alkaline solution (with an overpotential of 115 mV by 2 mg cm?2 loading at a current density of 20 mA cm?2) in contrast to barely HER activity for NiFe LDH‐NS itself. As a result, the bifunctional catalyst the authors developed can achieve a current density of 20 mA cm?2 by a voltage of only 1.5 V, which is also a record for the overall water splitting. Density functional theory calculation reveals that the synergetic effects of highly exposed 3d transition metal atoms and carbon defects are essential for the bifunctional activity for OER and HER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号