首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique structural and electronic properties of 2D materials, including the metal and metal‐free ones, have prompted intense exploration in the search for new catalysts. The construction of different heterostructures based on 2D materials offers great opportunities for boosting the catalytic activity in electo(photo)chemical reactions. Particularly, the merits resulting from the synergism of the constituent components and the fascinating properties at the interface are tremendously interesting. This scenario has now become the state‐of‐the‐art point in the development of active catalysts for assisting energy conversion reactions including water splitting and CO2 reduction. Here, starting from the theoretical background of the fundamental concepts, the progressive developments in the design and applications of heterostructures based on 2D materials are traced. Furthermore, a personal perspective on the exploration of 2D heterostructures for further potential application in catalysis is offered.  相似文献   

2.
Recent advances in emerging 2D nanomaterial‐based cellular materials (2D‐CMs) open up new opportunities for the development of next generation cellular solids with exceptional properties. Herein, an overview of the current research status of 2D‐CMs is provided and their future opportunities are highlighted. First, the unique features of 2D nanomaterials are introduced to illustrate why these nanoscale building blocks are promising for the development of novel cellular materials and what the new features of 2D nanoscale building blocks can offer when compared to their 0D and 1D counterparts. An in‐depth discussion on the structure–property relationships of 2D‐CMs is then provided, and the remarkable functions that can be achieved by engineering their cellular architecture are highlighted. Additionally, the use of 2D‐CMs to tackle key challenges in different practical applications is demonstrated. In conclusion, a personal perspective on the challenges and future research directions of 2D‐CMs is given.  相似文献   

3.
The unique electronic and structural properties of 2D materials have triggered wide research interest in catalysis. The lattice of 2D materials and the interface between 2D covers and other substrates provide intriguing confinement environments for active sites, which has stimulated a rising area of “confinement catalysis with 2D materials.” Fundamental understanding of confinement catalysis with 2D materials will favor the rational design of high‐performance 2D nanocatalysts. Confinement catalysis with 2D materials has found extensive applications in energy‐related reaction processes, especially in the conversion of small energy‐related molecules such as O2, CH4, CO, CO2, H2O, and CH3OH. Two representative strategies, i.e., 2D lattice‐confined single atoms and 2D cover‐confined metals, have been applied to construct 2D confinement catalytic systems with superior catalytic activity and stability. Herein, the recent advances in the design, applications, and structure–performance analysis of two 2D confinement catalytic systems are summarized. The different routes for tuning the electronic states of 2D confinement catalysts are highlighted and perspectives on confinement catalysis with 2D materials toward energy conversion and utilization in the future are provided.  相似文献   

4.
5.
Chiral materials are widely applied in various fields such as enantiomeric separation, asymmetric catalysis, and chiroptical effects, providing stereospecific conditions and environments. Supramolecular concepts to create the chiral materials can provide an insight for emerging chiro-optical properties due to their well-defined scaffolds and the precise functionalization of the surfaces or skeletons. Among the various supramolecular chiral structures, 2D chiral sheet structures are particularly interesting materials because of their extremely high surface area coupled with many unique chemical and physical properties, thereby offering potential for the next generation of functional materials for optically active systems and optoelectronic devices. Nevertheless, relatively limited examples for 2D chiral materials exhibiting specific functionality have been reported because incorporation of molecular chirality into 2D architectures is difficult at the present stage. Here, a brief overview of the recent advances is provided on the construction of chiral supramolecular 2D materials and their functions. The design principles toward 2D chirality and their potential applications are also discussed.  相似文献   

6.
The pervasiveness of information technologies is generating an impressive amount of data, which need to be accessed very quickly. Nonvolatile memories (NVMs) are making inroads into high‐capacity storage to replace hard disk drives, fuelling the expansion of the global storage memory market. As silicon‐based flash memories are approaching their fundamental limit, vertical stacking of multiple memory cell layers, innovative device concepts, and novel materials are being investigated. In this context, emerging 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous, offer a host of physical and chemical properties, which could both improve existing memory technologies and enable the next generation of low‐cost, flexible, and wearable storage devices. Herein, an overview of graphene and related 2D materials (GRMs) in different types of NVM cells is provided, including resistive random‐access, flash, magnetic and phase‐change memories. The physical and chemical mechanisms underlying the switching of GRM‐based memory devices studied in the last decade are discussed. Although at this stage most of the proof‐of‐concept devices investigated do not compete with state‐of‐the‐art devices, a number of promising technological advancements have emerged. Here, the most relevant material properties and device structures are analyzed, emphasizing opportunities and challenges toward the realization of practical NVM devices.  相似文献   

7.
2D materials are important building blocks for the upcoming generation of nanostructured electronics and multifunctional devices due to their distinct chemical and physical characteristics. To this end, large-scale production of 2D materials with high purity or with specific functionalities represents a key to advancing fundamental studies as well as industrial applications. Among the state-of-the-art synthetic protocols, electrochemical exfoliation of layered materials is a very promising approach that offers high yield, great efficiency, low cost, simple instrumentation, and excellent up-scalability. Remarkably, playing with electrochemical parameters not only enables tunable material properties but also increases the material diversities from graphene to a wide spectrum of 2D semiconductors. Here, a succinct and critical survey of the recent progress in this research direction is presented, comprising the strategic design, exfoliation principles, underlying mechanisms, processing techniques, and potential applications of 2D materials. At the end of the discussion, the emerging trends, challenges, and opportunities in real practice are also highlighted.  相似文献   

8.
Recent achievements and future opportunities for the design of 2D, 3D, and 4D materials using photochemical reactions are summarized. Light is an attractive stimulus for material design due to its outstanding spatiotemporal control, and its ability to mediate rapid polymerization under moderate reaction temperatures. These features have been significantly enhanced by major advances in light generation/manipulation with light-emitting diodes and optical fiber technologies which now allows for a broad range of cost-effective fabrication protocols. This combination is driving the preparation of sophisticated 2D, 3D, and 4D materials at the nano-, micro-, and macrosize scales. Looking ahead, future challenges and opportunities that will significantly impact the field and help shape the future of light as a versatile and tunable design tool are highlighted.  相似文献   

9.
10.
11.
2D phosphorene, arsenene, antimonene, and bismuthene, as a fast‐growing family of 2D monoelemental materials, have attracted enormous interest in the scientific community owing to their intriguing structures and extraordinary electronic properties. Tuning the monoelemental crystals into bielemental ones between group‐VA elements is able to preserve their advantages of unique structures, modulate their properties, and further expand their multifunctional applications. Herein, a review of the historical work is provided for both theoretical predictions and experimental advances of 2D V‐V binary materials. Their various intriguing electronic properties are discussed, including band structure, carrier mobility, Rashba effect, and topological state. An emphasis is also given to their progress in fabricated approaches and potential applications. Finally, a detailed presentation on the opportunities and challenges in the future development of 2D V‐V binary materials is given.  相似文献   

12.
When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two‐ingredient microstructured hierarchical and self‐similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature‐sensitive functional materials and devices.  相似文献   

13.
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu–O, Cu–S, Cu–Se, Cu–N, and Cu–P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal–air batteries, water-splitting, and CO2 reduction reaction (CO2RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.  相似文献   

14.
During the last 10 years, remarkable achievements on the chemical vapor deposition (CVD) growth of 2D materials have been made, but the understanding of the underlying mechanisms is still relatively limited. Here, the current progress on the understanding of the growth kinetics of 2D materials, especially for their CVD synthesis, is reviewed. In order to present a complete picture of 2D materials' growth kinetics, the following factors are discussed: i) two types of growth modes, namely attachment‐limited growth and diffusion‐limited growth; ii) the etching of 2D materials, which offers an additional degree of freedom for growth control; iii) a number of experimental factors in graphene CVD synthesis, such as structure of the substrate, pressure of hydrogen or oxygen, temperature, etc., which are found to have profound effects on the growth kinetics; iv) double‐layer and few‐layer 2D materials' growth, which has distinct features different from the growth of single‐layer 2D materials; and v) the growth of polycrystalline 2D materials by the coalescence of a few single crystalline domains. Finally, the current challenges and opportunities in future 2D materials' synthesis are summarized.  相似文献   

15.
16.
17.
Room-temperature synthesis of 2D graphitic materials (2D-GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank–van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D-GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set-up. The materials are tuned to exhibit porous or pinhole-free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid-metal-based room-temperature electrochemical route can be expanded to many other 2D materials.  相似文献   

18.
2D materials have attracted considerable attention due to their exciting optical and electronic properties, and demonstrate immense potential for next‐generation solar cells and other optoelectronic devices. With the scaling trends in photovoltaics moving toward thinner active materials, the atomically thin bodies and high flexibility of 2D materials make them the obvious choice for integration with future‐generation photovoltaic technology. Not only can graphene, with its high transparency and conductivity, be used as the electrodes in solar cells, but also its ambipolar electrical transport enables it to serve as both the anode and the cathode. 2D materials beyond graphene, such as transition‐metal dichalcogenides, are direct‐bandgap semiconductors at the monolayer level, and they can be used as the active layer in ultrathin flexible solar cells. However, since no 2D material has been featured in the roadmap of standard photovoltaic technologies, a proper synergy is still lacking between the recently growing 2D community and the conventional solar community. A comprehensive review on the current state‐of‐the‐art of 2D‐materials‐based solar photovoltaics is presented here so that the recent advances of 2D materials for solar cells can be employed for formulating the future roadmap of various photovoltaic technologies.  相似文献   

19.
2D nanomaterials are finding numerous applications in next‐generation electronics, consumer goods, energy generation and storage, and healthcare. The rapid rise of utility and applications for 2D nanomaterials necessitates developing means for their mass production. This study details a new compressible flow exfoliation method for producing 2D nanomaterials using a multiphase flow of 2D layered materials suspended in a high‐pressure gas undergoing expansion. The expanded gas–solid mixture is sprayed in a suitable solvent, where a significant portion (up to 10% yield) of the initial hexagonal boron nitride material is found to be exfoliated with a mean thickness of 4.2 nm. The exfoliation is attributed to the high shear rates ( > 105 s?1) generated by supersonic flow of compressible gases inside narrow orifices and converging‐diverging channels. This method has significant advantages over current 2D material exfoliation methods, such as chemical intercalation and exfoliation, as well as liquid phase shear exfoliation, with the most obvious benefit being the fast, continuous nature of the process. Other advantages include environmentally friendly processing, reduced occurrence of defects, and the versatility to be applied to any 2D layered material using any gaseous medium. Scaling this process to industrial production has a strong possibility of reducing the cost of creating 2D nanomaterials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号