首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Designing a facile strategy to prepare catalysts with highly active sites are challenging for large-scale implementation of electrochemical hydrogen production. Herein, a straightforward and eco-friendly method by high-energy mechanochemical ball milling for mass production of atomic Ru dispersive in defective MoS2 catalysts (Ru1@D-MoS2) is developed. It is found that single atomic Ru doping induces the generation of S vacancies, which can break the electronic neutrality around Ru atoms, leading to an asymmetrical distribution of electrons. It is also demonstrated that the Ru1@D-MoS2 exhibits superb alkaline hydrogen evolution enhancement, possibly attributing to this electronic asymmetry. The overpotential required to deliver a current density of 10 mA cm−2 is as low as 107 mV, which is much lower than that of commercial MoS2 (C-MoS2, 364 mV). Further density functional theory (DFT) calculations also support that the vacancy-coupled single Ru enables much higher electronic distribution asymmetry degree, which could regulate the adsorption energy of intermediates, favoring the water dissociation and the adsorption/desorption of H*. Besides, the long-term stability test under 500 mA cm−2 further confirms the robust performance of Ru1@D-MoS2. Our strategy provides a promising and practical way towards large-scale preparation of advanced HER catalysts for commercial applications.  相似文献   

2.
Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm?2 and a small Tafel slope of 53 mV dec?1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts.  相似文献   

3.
Developing efficient electrocatalysts for alkaline water electrolysis is central to substantial progress of alkaline hydrogen production. Herein, a Ni5P4 electrocatalyst incorporating single-atom Ru (Ni5P4-Ru) is synthesized through the filling of Ru3+ species into the metal vacancies of nickel hydroxides and subsequent phosphorization treatment. Electron paramagnetic resonance spectroscopy, X-ray-based measurements, and electron microscopy observations confirm the strong interaction between the nickel-vacancy defect and Ru cation, resulting in more than 3.83 wt% single-atom Ru incorporation in the obtained Ni5P4-Ru. The Ni5P4-Ru as an alkaline hydrogen evolution reaction catalyst achieves low onset potential of 17 mV and an overpotential of 54 mV at a current density of 10 mA cm-2 together with a small Tafel slope of 52.0 mV decade-1 and long-term stability. Further spectroscopy analyses combined with density functional theory calculations reveal that the doped Ru sites can cause localized structure polarization, which brings the low energy barrier for water dissociation on Ru site and the optimized hydrogen adsorption free energy on the interstitial site, well rationalizing the experimental reactivity.  相似文献   

4.
Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2/NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2, and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2/NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm−2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2/NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm−2 and 600 mA cm−2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.  相似文献   

5.
Development of cost‐effective, active trifunctional catalysts for acidic oxygen reduction (ORR) as well as hydrogen and oxygen evolution reactions (HER and OER, respectively) is highly desirable, albeit challenging. Herein, single‐atomic Ru sites anchored onto Ti3C2Tx MXene nanosheets are first reported to serve as trifunctional electrocatalysts for simultaneously catalyzing acidic HER, OER, and ORR. A half‐wave potential of 0.80 V for ORR and small overpotentials of 290 and 70 mV for OER and HER, respectively, at 10 mA cm?2 are achieved. Hence, a low cell voltage of 1.56 V is required for the acidic overall water splitting. The maximum power density of an H2–O2 fuel cell using the as‐prepared catalyst can reach as high as 941 mW cm?2. Theoretical calculations reveal that isolated Ru–O2 sites can effectively optimize the adsorption of reactants/intermediates and lower the energy barriers for the potential‐determining steps, thereby accelerating the HER, ORR, and OER kinetics.  相似文献   

6.
Maximizing activity of Pt catalysts toward methanol oxidation reaction (MOR) together with minimized poisoning of adsorbed CO during MOR still remains a big challenge. In the present work, uniform and well‐distributed Pt nanoparticles (NPs) grown on an atomic carbon layer, that is in situ formed by means of dry‐etching of silicon carbide nanoparticles (SiC NPs) with CCl4 gas, are explored as potential catalysts for MOR. Significantly, as‐synthesized catalysts exhibit remarkably higher MOR catalytic activity (e.g., 647.63 mA mg?1 at a peak potential of 0.85 V vs RHE) and much improved anti‐CO poisoning ability than the commercial Pt/C catalysts, Pt/carbon nanotubes, and Pt/graphene catalysts. Moreover, the amount of expensive Pt is a few times lower than that of the commercial and reported catalyst systems. As confirmed from density functional theory (DFT) calculations and X‐ray absorption fine structure (XAFS) measurements, such high performance is due to reduced adsorption energy of CO on the Pt NPs and an increased amount of adsorbed energy OH species that remove adsorbed CO fast and efficiently. Therefore, these catalysts can be utilized for the development of large‐scale and industry‐orientated direct methanol fuel cells.  相似文献   

7.
Designing non‐precious‐metal catalysts with comparable mass activity to state‐of‐the‐art noble‐metal catalysts for the hydrogen evolution reaction (HER) in alkaline solution still remains a significant challenge. Herein a new strongly coupled nickel–cobalt nitrides/carbon complex nanocage (NiCoNzocage) is rationally designed via chemical etching of ZIF‐67 nanocubes with Ni(NO3)2 under sonication at room temperature, following nitridation. The as‐prepared strongly coupled NiCoN/C nanocages exhibit a mass activity of 0.204 mA µg?1 at an overpotential of 200 mV for the HER in alkaline solution, which is comparable to that of commercial Pt/C (0.451 mA µg?1). The strongly coupled NiCoN/C nanocages also possess superior stability for the HER with negligible current loss under the overpotentials of 200 mV for 10 h. Density functional theory (DFT) calculations reveal that the excellent HER performance under alkaline condition arises from the robust Co2+→Co0 transformation achieved by strong (Ni, Co)? N‐bonding‐induced efficient d‐p‐d coupled electron transfer, which is a key for optimal initial water adsorption and splitting. The high degree of amorphization urges the C‐sites to be an electron‐pushing bath to promote the inter‐layer/sites electron‐transfer with loss of the orbital‐selection‐forbidden‐rule, which uniformly boosts the surface catalytic activities up to a high level independent of the individual surface active sites.  相似文献   

8.
Recent success in achieving highly stable Rb‐containing organolead halide perovskites has indicated the possibility of incorporating small monovalent cations, which cannot fit in the lead‐halide cage with an appropriate tolerance factor, into the perovskite lattice while maintaining a pure stable “black” phase. In this study, through a combined experimental and theoretical investigation by density functional theory (DFT) calculations on the incorporation of extrinsic alkali cations (Rb+, K+, Na+, and Li+) in perovskite materials, the size‐dependent interstitial occupancy of these cations in the perovskite lattice is unambiguously revealed. Interestingly, DFT calculations predict the increased ion migration barriers in the lattice after the interstitial occupancy. To verify this prediction, ion migration behavior is characterized through hysteresis analysis of solar cells, electrical poling, temperature‐dependent conductivity, and time‐dependent photoluminescence measurements. The results collectively point to the suppression of ion migration after lattice interstitial occupancy by extrinsic alkali cations. The findings of this study provide new material design principles to manipulate the structural and ionic properties of multication perovskite materials.  相似文献   

9.
An outstanding hydrogen evolution electrocatalyst should have a free energy of adsorbed atomic hydrogen of approximately zero, which enables not only a fast proton/electron‐transfer step but also rapid hydrogen release. An economic and industrially viable alternative approach for the optimization of atomic hydrogen binding energy is urgently needed. Herein, guided by density functional theory (DFT) calculations, it is theoretically demonstrated that oxygen doping in NiCoP can indeed optimize the atomic hydrogen binding energy (e.g., |ΔGH*| = 0.08, 0.12 eV on Co, P sites). To confirm this, NiCoP electrodes with controllable oxygen doping are designed and fabricated via alteration of the reducing atmosphere. Accordingly, an optimal oxygen‐doped NiCoP (≈0.98% oxygen) nanowire array is found to exhibit the remarkably low hydrogen evolution reaction (HER) overpotential of 44 mV to drive 10 mA cm?2 and a small Tafel slope of 38.6 mV dec?1, and long‐term stability of 30 h in an alkaline medium. In neutral solution, only a 51 mV overpotential (@10 mA cm?2) is required, and the Tafel slope is 79.2 mV dec?1. Meanwhile, in situ Raman spectra confirm the low formation overpotential (?30 mV) of NiCo‐phosphate at the surface of ≈0.98% oxygen‐doped NiCoP, which enables the material to show better HER performance.  相似文献   

10.
Enhanced electron field emission (EFE) behavior of a core–shell heterostructure, where ZnO nanorods (ZNRs) form the core and ultrananocrystalline diamond needles (UNCDNs) form the shell, is reported. EFE properties of ZNR‐UNCDN core–shell heterostructures show a high emission current density of 5.5 mA cm?2 at an applied field of 4.25 V μm?1, and a low turn‐on field of 2.08 V μm?1 compared to the 1.67 mA cm?2 emission current density (at an applied field of 28.7 V μm?1) and 16.6 V μm?1 turn‐on field for bare ZNRs. Such an enhancement in the field emission originates from the unique materials combination, resulting in good electron transport from ZNRs to UNCDNs and efficient field emission of electrons from the UNCDNs. The potential application of these materials is demonstrated by the plasma illumination measurements that lowering the threshold voltage by 160 V confirms the role of ZNR‐UNCDN core–shell heterostructures in the enhancement of electron emission.  相似文献   

11.
A titanium carbide (Ti3C2Tx) MXene is employed as an efficient solid support to host a nitrogen (N) and sulfur (S) coordinated ruthenium single atom (RuSA) catalyst, which displays superior activity toward the hydrogen evolution reaction (HER). X‐ray absorption fine structure spectroscopy and aberration corrected scanning transmission electron microscopy reveal the atomic dispersion of Ru on the Ti3C2Tx MXene support and the successful coordination of RuSA with the N and S species on the Ti3C2Tx MXene. The resultant RuSA‐N‐S‐Ti3C2Tx catalyst exhibits a low overpotential of 76 mV to achieve the current density of 10 mA cm?2. Furthermore, it is shown that integrating the RuSA‐N‐S‐Ti3C2Tx catalyst on n+np+‐Si photocathode enables photoelectrochemical hydrogen production with exceptionally high photocurrent density of 37.6 mA cm?2 that is higher than the reported precious Pt and other noble metals catalysts coupled to Si photocathodes. Density functional theory calculations suggest that RuSA coordinated with N and S sites on the Ti3C2Tx MXene support is the origin of this enhanced HER activity. This work would extend the possibility of using the MXene family as a solid support for the rational design of various single atom catalysts.  相似文献   

12.
Tungsten oxide (WO3) is an appealing electrocatalyst for the hydrogen evolution reaction (HER) owing to its cost-effectiveness and structural adjustability. However, the WO3 electrocatalyst displays undesirable intrinsic activity for the HER, which originates from the strong hydrogen adsorption energy. Herein, for effective defect engineering, a hydrogen atom inserted into the interstitial lattice site of tungsten oxide (H0.23WO3) is proposed to enhance the catalytic activity by adjusting the surface electronic structure and weakening the hydrogen adsorption energy. Experimentally, the H0.23WO3 electrocatalyst is successfully prepared on reduced graphene oxide. It exhibits significantly improved electrocatalytic activity for HER, with a low overpotential of 33 mV to drive a current density of 10 mA cm−2 and ultra-long catalytic stability at high-throughput hydrogen output (200 000 s, 90 mA cm−2) in acidic media. Theoretically, density functional theory calculations indicate that strong interactions between interstitial hydrogen and lattice oxygen lower the electron density distributions of the d-orbitals of the active tungsten (W) centers to weaken the adsorption of hydrogen intermediates on W-sites, thereby sufficiently promoting fast desorption from the catalyst surface. This work enriches defect engineering to modulate the electron structure and provides a new pathway for the rational design of efficient catalysts for HER.  相似文献   

13.
The exploration of highly efficient electrocatalysts for both oxygen and hydrogen generation via water splitting is receiving considerable attention in recent decades. Up till now, Pt‐based catalysts still exhibit the best hydrogen evolution reaction (HER) performance and Ir/Ru‐based oxides are identified as the benchmark for oxygen evolution reaction (OER). However, the high cost and rarity of these materials extremely hinder their large‐scale applications. This paper describes the construction of the ultrathin defect‐enriched 3D Se‐(NiCo)Sx/(OH)x nanosheets for overall water splitting through a facile Se‐induced hydrothermal treatment. Via Se‐induced fabrication, highly efficient Se‐(NiCo)Sx/(OH)x nanosheets are successfully fabricated through morphology optimization, defect engineering, and electronic structure tailoring. The as‐prepared hybrids exhibit relatively low overpotentials of 155 and 103 mV at the current density of 10 mA cm?2 for OER and HER, respectively. Moreover, an overall water‐splitting device delivers a current density of 10 mA cm?2 for ≈66 h without obvious degradation.  相似文献   

14.
Exploring the origin of transition metal (TM) lattice‐doped layered double hydroxides (LDHs) toward the oxygen evolution reaction (OER) plays a crucial role in engineering efficient electrocatalysts. Without understanding the physics behind the TM‐induced catalytic enhancements, it would be challenging to design the next generation of electrocatalysts. Herein, single Ru atoms are introduced into a CoCr LDHs lattice to improve activity. In 0.1 m KOH, CoCrRu LDHs require only 290 mV overpotential to drive to 10 mA cm?2 and show a Tafel slope of 56.12 mV dec?1. Electronic structure analyses based on density functional theory confirm that promoted OER activity originates from synergetic charge transfer among Ru, Cr, and Co elements. Specifically, Ru dopants can downshift d states of Co and enhance electron donation of Cr to oxygenates, which essentially breaks the scaling relation and achieves higher activity. This work provides insights into how single atomic Ru dopant tunes the electronic structures of its neighbor's active site Co and thus increases OER activities.  相似文献   

15.
Manipulating the in‐plane defects of metal–nitrogen–carbon catalysts to regulate the electroreduction reaction of CO2 (CO2RR) remains a challenging task. Here, it is demonstrated that the activity of the intrinsic carbon defects can be dramatically improved through coupling with single‐atom Fe–N4 sites. The resulting catalyst delivers a maximum CO Faradaic efficiency of 90% and a CO partial current density of 33 mA cm?2 in 0.1 m KHCO3. The remarkable enhancements are maintained in concentrated electrolyte, endowing a rechargeable Zn–CO2 battery with a high CO selectivity of 86.5% at 5 mA cm?2. Further analysis suggests that the intrinsic defect is the active sites for CO2RR, instead of the Fe–N4 center. Density functional theory calculations reveal that the Fe–N4 coupled intrinsic defect exhibits a reduced energy barrier for CO2RR and suppresses the hydrogen evolution activity. The high intrinsic activity, coupled with fast electron‐transfer capability and abundant exposed active sites, induces excellent electrocatalytic performance.  相似文献   

16.
The development of Pt‐free electrocatalysts for the hydrogen evolution reaction (HER) recently is a focus of great interest. While several strategies are developed to control the structural properties of non‐Pt catalysts and boost their electrocatalytic activities for the HER, the generation of highly reactive defects or interfaces by combining a metal with other metals, or with metal oxides/sulfides, can lead to notably enhanced catalytic performance. Herein, the preparation of cactus‐like hollow Cu2‐x S@Ru nanoplates (NPs) that contain metal/metal sulfide heterojunctions and show excellent catalytic activity and durability for the HER in alkaline media is reported. The initial formation of Ru islands on presynthesized Cu1.94S NPs, via cation exchange between three Cu+ ions and one Ru3+, induces the growth of the Ru phase, which is concomitant with the dissolution of the Cu1.94S nanotemplate, culminating in the formation of a hollow nanostructure with numerous thin Ru pillars. Hollow Cu2‐x S@Ru NPs exhibit a small overpotential of 82 mV at a current density of ?10 mA cm?2 and a low Tafel slope of 48 mV dec?1 under alkaline conditions; this catalyst is among state‐of‐the‐art HER electrocatalysts in alkaline media. The excellent performance of hollow Cu2‐x S@Ru NPs originates from the facile dissociation of water in the Volmer step.  相似文献   

17.
Nickel‐cobalt borides (denoted as NCBs) have been considered as a promising candidate for aqueous supercapacitors due to their high capacitive performances. However, most reported NCBs are amorphous that results in slow electron transfer and even structure collapse during cycling. In this work, a nanocrystallized NCBs‐based supercapacitor is successfully designed via a facile and practical microimpinging stream reactor (MISR) technique, composed of a nanocrystallized NCB core to facilitate the charge transfer, and a tightly contacted Ni‐Co borates/metaborates (NCBi) shell which is helpful for OH? adsorption. These merits endow NCB@NCBi a large specific capacity of 966 C g?1 (capacitance of 2415 F g?1) at 1 A g?1 and good rate capability (633.2 C g?1 at 30 A g?1), as well as a very high energy density of 74.3 Wh kg?1 in an asymmetric supercapacitor device. More interestingly, it is found that a gradual in situ conversion of core NCBs to nanocrystallized Ni‐Co (oxy)‐hydroxides inwardly takes place during the cycles, which continuously offers large specific capacity due to more electron transfer in the redox reaction processes. Meanwhile, the electron deficient state of boron in metal‐borates shells can make it easier to accept electrons and thus promote ionic conduction.  相似文献   

18.
Rational design of low‐cost, highly efficient, and stable electrocatalysts for the hydrogen evolution reaction (HER) has attracted wide attention. Herein, 3D RuCu nanocrystals (NCs) are successfully synthesized by a facile wet chemistry method, in which amorphous RuCu nanosheets are directly grown on crystalline Cu nanotubes (NTs). Importantly, the obtained 3D RuCu NCs only need 18 and 73 mV to deliver the current density of 10 mA cm?2 for HER in alkaline and neutral media, respectively. Density functional theory calculations and experiments reveal that the Ru sites on the surface of amorphous nanosheets are the highly active centers for HER. Moreover, this catalyst can expose more surface area for water splitting compared to pure nanosheets because the unique 3D structure can effectively prevent the aggregation of nanosheets. Meanwhile, the interface between amorphous nanosheets and crystalline NTs is essential to boost the HER performance because the amorphous phase with many unsaturated bonds can facilitate adsorption of reactants and crystalline Cu with superior conductivity can promote the transfer of electrons. This work provides a facile method to prepare an original 3D Ru‐based electrocatalyst with highly active HER performance in wide pH values.  相似文献   

19.
Electroless deposition via a spontaneous redox reaction between the metal precursor and support is believed to be a promising approach for the syntheses of supported metal nanoparticles (SMNPs). However, its widespread applications are significantly prohibited by the low reductivity and high cost of support. To overcome these shortcomings, a porous carbon (PC) is herein developed as a promising matrix for the electroless deposition of metal NPs. Benefiting from abundant oxygen‐based surface functional groups, the PC shows stronger reducibility (low redox potential) than conventional carbon substrate such as carbon nanotubes or graphene oxide, enabling a facile electroless deposition of Ir, Rh, and Ru NPs on its surface. These SMNPs exhibit an impressive electrocatalytic activity for the hydrogen evolution reaction (HER) or hydrogen oxidation reaction (HOR). For example, the Rh NP/PC can deliver an HER current density of 10 mA cm?2 with a small overpotential of 21 mV in 0.5 m H2SO4, while the Ru NP/PC exhibits excellent HOR activity in 0.1 m KOH in terms of high mass and surface specific exchange current density of 263 A g?1Ru and 0.227 mA cm?2Ru. The present strategy may open up opportunities for mass production of efficient supported NPs for diverse applications.  相似文献   

20.
Molybdenum diselenide (MoSe2) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its properties are still confined due to the limited active sites and poor conductivity. Thus, it remains a great challenge to synergistically achieve structural and electronic modulations for MoSe2‐based HER catalysts because of the contradictory relationship between these two characteristics. Herein, bacterial cellulose‐derived carbon nanofibers are used to assist the uniform growth of few‐layered MoSe2 nanosheets, which effectively increase the active sites of MoSe2 for hydrogen atom adsorption. Meanwhile, carbonized bacterial cellulose (CBC) nanofibers provide a 3D network for electrolyte penetration into the inner space and accelerate electron transfer as well, thus leading to the dramatically increased HER activity. In acidic media, the CBC/MoSe2 hybrid catalyst exhibits fast hydrogen evolution kinetics with onset overpotential of 91 mV and Tafel slope of 55 mV dec?1, which is much more outstanding than both bulk MoSe2 aggregates and CBC nanofibers. Furthermore, the fast HER kinetics are well supported by theoretical calculations of density‐functional‐theory analysis with a low activation barrier of 0.08 eV for H2 generation. Hence, this work highlights an efficient solution to develop high‐performance HER catalysts by incorporating biotemplate materials, to simultaneously achieve increased active sites and conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号