首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
For sensors detecting immobilized biomarkers, the interface between the surface and the fluid medium plays an important role in determining the levels of signal and noise in the electrochemical detection process. When protein is directly immobilized on the metal electrode, denaturation of the protein by surface–protein interaction results in low activity and low signal level. A conducting polymer‐based interface can prevent the protein conformation change and alleviate this problem. A DNA dendrimer is introduced into the interfacial film on the sensor surface to further improve the sensor performance. DNA dendrimer is a nanoscale dendrite constructed of short DNA sequences, which can be easily incorporated into the abiotic conducting polymer matrix and is biocompatible with most biological species. In this work, DNA dendrimer and polypyrrole (DDPpy) form the bio/abiotic interface on electrochemical sensors. Detection of two salivary protein markers (IL‐8 and IL‐1β) and one mRNA salivary marker (IL‐8) is used to demonstrate the efficiency of the DDPpy sensor. A limit of detection (LOD) of protein of 100–200 fg mL?1 is achieved, which is three orders of magnitude better than that without the DNA dendrimer interface. An LOD of 10 aM is established for IL‐8 mRNA. The typical sample volume used in the detection is 4 µL, thus the LOD reaches only 25 target molecules (40 yoctomole).  相似文献   

4.
5.
Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced. Rational design of an ultrahigh affinity host–guest ternary complex led to binding affinities (>1013 M-2) of over an order of magnitude greater than previous reports. Embedding these complexes as dynamic cross-links, coupled with in situ synthesis of a conducting polymer, resulted in electrically conductive supramolecular polymer networks with tissue-mimetic Young's moduli (<5 kPa), high stretchability (>500%), rapid self-recovery and high water content (>84%). Achieving such properties enabled fabrication of intrinsically-stretchable stand-alone bioelectrodes, capable of accurately monitoring electromyography signals, free from any rigid materials.  相似文献   

6.
7.
透皮给药相比于传统的给药方式,具有更多的优势.但是,皮肤的角质层能够阻止外源性物质的侵犯,限制了透皮给药系统的应用.为此,基于微针的透皮给药系统的提出增大了透皮给药系统的应用范围.首先,采用MEM技术制作单晶硅微针.接下来,提出一种新颖、简单而且经济的方法快速制作聚乳酸微针.通过理论分析及有限元分析微针的力学性能,表明微针有足够的强度.体外透皮实验表明,未经微针处理的皮肤,钙黄绿素10h的累计渗透量只有0.17±0.07 μg/cm2;手动进针处理的皮肤只达到4.54±1.17 μg/cm2,比未用微针处理的皮肤增加了30倍;经过进针器处理的皮肤,各个时间点的渗透量均有显著性提高(P〈0.05),渗透量达到45.37±5.80 μg/cm2,比未用微针处理的皮肤增加了300倍.所有的结果都表明,本实验室制备可降解的聚乳酸微针的方法新颖、快速且经济,而且对于透皮给药系统来说具有很大的潜在价值.  相似文献   

8.
9.
10.
Abstract

Conducting polymers hold significant promise as electrode coatings; however, they are characterized by inherently poor mechanical properties. Blending or producing layered conducting polymers with other polymer forms, such as hydrogels, has been proposed as an approach to improving these properties. There are many challenges to producing hybrid polymers incorporating conducting polymers and hydrogels, including the fabrication of structures based on two such dissimilar materials and evaluation of the properties of the resulting structures. Although both fabrication and evaluation of structure–property relationships remain challenges, materials comprised of conducting polymers and hydrogels are promising for the next generation of bioactive electrode coatings.  相似文献   

11.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

12.
Lithium-ion batteries have remained a state-of-the-art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high-voltage cathodes represent promising candidates for next-generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high-performing single-ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room-temperature conductivity of 1.5 × 10−4 S cm−1, and exceptional selectivity for Li-ion conduction (tLi+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi-solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.  相似文献   

13.
14.
Conducting polymer nanostructures have recently received special attention in nanoscience and nanotechnology because of their highly π‐conjugated polymeric chains and metal‐like conductivity, such that they can be regarded not only as excellent molecular wires, but also as basic units for the formation of nanodevices. Although various approaches, such as hard‐template methods, soft‐template methods, electrospinning technology, and so on are widely employed to synthesize or fabricate conducting polymer nanostructures and their composite nanostructures, each of the currently used methods possess disadvantages. Therefore, finding a facile, efficient, and controlled method of forming conducting polymer nanostructures is desirable. Similar to other nanomaterials, the effect of size (in these cases 1–100 nm) on the properties of the conducting polymer nanostructures must be considered. Electrical measurements of single nanotubes or nanowires are desirable in order to be able to understand the pure electrical properties of conducting polymer nanostructures. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in technological applications because of the unique properties arising from their nanometer‐scaled size: high conductivity, large surface area, and light weight. Thus, it is also desirable to develop promising applications for conducting polymer nanostructures. In accordance with the issues described above, our research focuses on a new synthesis method to form conducting polymer nanostructures and on the related formation mechanism of the resultant nanostructures. The electrical and transport properties of single nanotubes of conducting polymer, measured by a four‐probe method, and promising applications of such template‐free‐synthesized conducting polymer nanostructures as new microwave absorbing materials and sensors guided by a reversible wettability are also of interest. This article reports some of our main results and reviews some important contributions of others.

  相似文献   


15.
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long‐standing problems in biology and medicine are discussed throughout.  相似文献   

16.
All cells have a resting membrane potential resulting from an ion gradient across the plasma membrane. The resting membrane potential of cells is tightly coupled to regeneration and differentiation. The ability to control this parameter provides the opportunity for both biomedical advances and the probing of fundamental bioelectric pathways. The use of poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) conducting polymer microwires to depolarize cells is tested using E. coli cells loaded with a fluorescent dye that is pumped out of the cells in response to depolarization; a more positive membrane potential. Fluorescence imaging of the cells in response to a conducting‐polymer‐microwire applied voltage confirms depolarization and shows that the rate of depolarization is a function of the applied voltage and frequency. Microwire activity does not damage the cells, demonstrated with a propidium iodide assay of membrane integrity. The conducting polymer microwires do not penetrate the cell, or even come into contact with the cell; they only need to generate a minimum electric field, controlled by the placement of the wires. It is expected that these microwires will provide a new, noninvasive, cellular‐scale tool for the control of resting membrane potential with high spatial precision.  相似文献   

17.
18.
19.
Sensitive and selective detection of nitric oxide (NO) in the human body is crucial since it has the vital roles in the physiological and pathological processes. This study reports a new type of electrochemical NO biosensor based on zinc‐dithiooxamide framework derived porous ZnO nanoparticles and polyterthiophene‐rGO composite. By taking advantage of the synergetic effect between ZnO and poly(TTBA‐rGO) (TTBA = 3′‐(p‐benzoic acid)‐2,2′:5′,2″‐terthiophene, rGO = reduced graphene oxide) nanocomposite layer, the poly(TTBA‐rGO)/ZnO sensor probe displays excellent electrocatalytic activity and explores to detect NO released from normal and cancer cell lines. The ZnO is immobilized on a composite layer of poly(TTBA‐rGO). The highly porous ZnO offers a high electrolyte accessible surface area and high ion–electron transport rates that efficiently catalyze the NO reduction reaction. Amperometry with the modified electrode displays highly sensitive response and wide dynamic range of 0.019–76 × 10?6m with the detection limit of 7.7 ± 0.43 × 10?9m . The sensor probe is demonstrated to detect NO released from living cells by drug stimulation. The proposed sensor provides a powerful platform for the low detection limit that is feasible for real‐time analysis of NO in a biological system.  相似文献   

20.
Degradable microparticles have broad utility as vehicles for drug delivery and form the basis of several therapies approved by the US Food and Drug Administration. Conventional emulsion‐based methods of manufacturing produce particles with a wide range of diameters (and thus kinetics of release) in each batch. This paper describes the fabrication of monodisperse, drug‐loaded microparticles from biodegradable polymers using the microfluidic flow‐focusing (FF) devices and the drug‐delivery properties of those particles. Particles are engineered with defined sizes, ranging from 10 µm to 50 µm. These particles are nearly monodisperse (polydispersity index = 3.9%). A model amphiphilic drug (bupivacaine) is incorporated within the biodegradable matrix of the particles. Kinetic analysis shows that the release of the drug from these monodisperse particles is slower than that from conventional methods of the same average size but a broader distribution of sizes and, most importantly, exhibit a significantly lower initial burst than that observed with conventional particles. The difference in the initial kinetics of drug release is attributed to the uniform distribution of the drug inside the particles generated using the microfluidic methods. These results demonstrate the utility of microfluidic FF for the generation of homogenous systems of particles for the delivery of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号