首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   

2.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

3.
Metal phosphides and heteroatom‐doped carbons have been regarded as promising candidates as bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, both have suffered from stability issues during repeated ORR and OER operations in zinc–air batteries (ZABs). Herein, this study reports a versatile cobalt‐based hybrid catalyst with a 1D structure by integrating the metal‐organic framework‐derived conversion approach and an in situ crosslinking method. Among them, the 1D hybrid catalyst composed of ultrasmall cobalt phosphide nanoparticles supported by nitrogen‐, sulfur‐, phosphorus‐doped carbon matrix shows remarkable bifunctional activity close to that of the benchmark precious‐metal catalysts along with an excellent durability in the full potential range covering both the OER and ORR. The overall overpotential of the rechargeable ZABs can be greatly reduced with this bifunctional hybrid catalyst as an air‐electrode, and the cycling stability outperforms the commercial Pt/C catalyst. It is revealed that the cobalt phosphide nanoparticles are in situ converted to cobalt oxide under the accelerated conditions during OER (and/or ORR) of the ZABs and reduces the anodic current applied to the carbon. This contributes to the stability of the carbon material and in maintaining the high initial catalytic properties of the hybrid catalyst.  相似文献   

4.
Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal–air batteries. In this study, one‐nanometer‐scale ultrathin cobalt oxide (CoOx) layers are fabricated on a conducting substrate (i.e., a metallic Co/N‐doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn–air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X‐ray absorption spectroscopy reveals that the metallic Co/N‐doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as‐obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half‐wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm?2 for OER. The flexible Zn–air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat ?1, which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high‐performance rechargeable metal–air battery systems.  相似文献   

5.
Highly active and durable bifunctional oxygen electrocatalysts are of pivotal importance for clean and renewable energy conversion devices, but the lack of earth‐abundant electrocatalysts to improve the intrinsic sluggish kinetic process of oxygen reduction/evolution reactions (ORR/OER) is still a challenge. Fe‐N‐C catalysts with abundant natural merits are considered as promising alternatives to noble‐based catalysts, yet further improvements are urgently needed because of their poor stability and unclear catalytic mechanism. Here, an atomic‐level Fe‐N‐C electrocatalyst coupled with low crystalline Fe3C‐Fe nanocomposite in 3D carbon matrix (Fe‐SAs/Fe3C‐Fe@NC) is fabricated by a facile and scalable method. Versus atomically FeNx species and crystallized Fe3C‐Fe nanoparticles, Fe‐SAs/Fe3C‐Fe@NC catalyst, abundant in vertical branched carbon nanotubes decorated on intertwined carbon nanofibers, exhibits high electrocatalytic activities and excellent stabilities both in ORR (E1/2, 0.927 V) and OER (EJ=10, 1.57 V). This performance benefits from the strong synergistic effects of multicomponents and the unique structural advantages. In‐depth X‐ray absorption fine structure analysis and density functional theory calculation further demonstrate that more extra charges derived from modified Fe clusters decisively promote the ORR/OER performance for atomically FeN4 configurations by enhanced oxygen adsorption energy. These insightful findings inspire new perspectives for the rational design and synthesis of economical–practical bifunctional oxygen electrocatalysts.  相似文献   

6.
Transition metal (TM)‐based carbon hybrids have numerous applications in the field of regenerative electrochemical energy. The synergetic effects of high conductivity of carbon supports and abundant catalytic active sites in TMs make these hybrids promising oxygen evolution reaction (OER) electrocatalysts. However, strategies for modulating the catalytic active species in the above hybrids are limited despite being highly sought after. Furthermore, the exact roles of chemical species in the hybrids (e.g., N, C, or TM) mainly responsible for this high OER performance remain unknown. Herein, an innovative approach based on atomic layer deposition is developed to tune the true active species in Co nanoparticle/N‐doped carbon nanotube (Co/N‐CNT) hybrids. Specifically, the configuration predominantly promoting water oxidation in an alkaline medium is identified as pyridinic N–Co–C. Furthermore, a physicochemical intact interface between metallic Co nanoparticles and conductive N‐CNTs is demonstrated to induce synergetic effects for accelerating charge transfer and enhancing electrocatalytic activity as well as stability in the hybrid catalysts. The optimized hybrid catalyst is revealed to exhibit outstanding alkaline OER activity and stability, outperforming RuO2, a benchmark novel OER electrocatalyst.  相似文献   

7.
Developing efficient and low‐cost defective carbon‐based catalysts for the oxygen reduction reaction (ORR) is essential to metal–air batteries and fuel cells. Active sites engineering toward these catalysts is highly desirable but challenging to realize boosted catalytic performance. Herein, a sandwich‐like confinement route to achieve the controllable regulation of active sites for carbon‐based catalysts is reported. In particular, three distinct catalysts including metal‐free N‐doped carbon (NC), single Co atoms dispersed NC (Co–N–C), and Co nanoparticles‐contained Co–N–C (Co/Co–N–C) are controllably realized and clearly identified by synchrotron radiation‐based X‐ray spectroscopy. Electrochemical measurements suggest that the Co/Co–N–C catalyst delivers optimized ORR performance due to the rich Co–Nx active sites and their synergistic effect with metallic Co nanoparticles. This work provides deep insight for rationally designing efficient ORR catalyst based on active sites engineering.  相似文献   

8.
Developing non‐precious‐metal bifunctional oxygen reduction and evolution reaction (ORR/OER) catalysts is a major task for promoting the reaction efficiency of Zn–air batteries. Co‐based catalysts have been regarded as promising ORR and OER catalysts owing to the multivalence characteristic of cobalt element. Herein, the synthesis of Co nanoislands rooted on Co–N–C nanosheets supported by carbon felts (Co/Co–N–C) is reported. Co nanosheets rooted on the carbon felt derived from electrodeposition are applied as the self‐template and cobalt source. The synergistic effect of metal Co islands with OER activity and Co–N–C nanosheets with superior ORR performance leads to good bifuctional catalytic performances. Wavelet transform extended X‐ray absorption fine spectroscopy and X‐ray photoelectron spectroscopy certify the formation of Co (mainly Co0) and the Co–N–C (mainly Co2+ and Co3+) structure. As the air‐cathode, the assembled aqueous Zn–air battery exhibits a small charge–discharge voltage gap (0.82 V@10 mA cm?2) and high power density of 132 mW cm?2, outperforming the commercial Pt/C catalyst. Additionally, the cable flexible rechargeable Zn–air battery exhibits excellent bendable and durability. Density functional theory calculation is combined with operando X‐ray absorption spectroscopy to further elucidate the active sites of oxygen reactions at the Co/Co–N–C cathode in Zn–air battery.  相似文献   

9.
Rational design of cost‐effective, nonprecious metal‐based catalysts with desirable oxygen reduction reaction (ORR) performance is extremely important for future fuel cell commercialization, etc. Herein, a new type of ORR catalyst of Co‐N‐doped mesoporous carbon hollow sphere (Co‐N‐mC) was developed by pyrolysis from elaborately fabricated polystyrene@polydopamine‐Co precursors. The obtained catalysts with active Co sites distributed in highly graphitized mesoporous N‐doped carbon hollow spheres exhibited outstanding ORR activity with an onset potential of 0.940 V, a half‐wave potential of 0.851 V, and a small Tafel slope of 45 mV decade?1 in 0.1 m KOH solution, which was comparable to that of the Pt/C catalyst (20%, Alfa). More importantly, they showed superior durability with little current decline (less than 4%) in the chronoamperometric evaluation over 60 000 s. These features make the Co‐N‐mC one of the best nonprecious‐metal catalysts to date for ORR in alkaline condition.  相似文献   

10.
The addition of transition metals, even in a trace amount, into heteroatom‐doped carbon (M‐N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon‐based materials remains a big challenge, especially in OER potential regions. Here, bimetal‐decorated, pyridinic N‐dominated large‐size carbon tubes (MM′‐N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe‐N/C, CoCo‐N/C, NiNi‐N/C, MnMn‐N/C, FeCo‐N/C, NiFe‐N/C, FeMn‐N/C, CoNi‐N/C, MnCo‐N/C, and NiMn‐N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N‐decorated carbon, small amounts of bimetal (≈2 at%) added during the one‐step template‐free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe‐N/C and MnCo‐N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state‐of‐the‐art catalysts.  相似文献   

11.
Rational design and synthesis of highly active and robust bifunctional non‐noble electrocatalysts for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for efficient rechargeable metal–air batteries. Herein, abundant MnO/Co heterointerfaces are engineered in porous graphitic carbon (MnO/Co/PGC) polyhedrons via a facile hydrothermal‐calcination route with a bimetal–organic framework as the precursor. The in situ generated Co nanocrystals not only create well‐defined heterointerfaces with high conductivity to overcome the poor OER activity but also promote the formation of robust graphitic carbon. Owing to the desired composition and formation of the heterostructures, the resulting MnO/Co/PGC exhibits superior activity and stability toward both OER and ORR, which makes it an efficient air cathode for the rechargeable Zn–air battery. Importantly, the homemade Zn–air battery is able to deliver excellent performance including a peak power density of 172 mW cm?2 and a specific capacity of 872 mAh g?1, as well as excellent cycling stability (350 cycles), outperforming commercial mixed Pt/C||RuO2 catalysts. This work highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal–air cathode materials.  相似文献   

12.
The development of high‐performance but low‐cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.  相似文献   

13.
The oxygen evolution reaction (OER) catalytic activity of a transition metal oxides/hydroxides based electrocatalyst is related to its pseudocapacitance at potentials lower than the OER standard potential. Thus, a well‐defined pseudocapacitance could be a great supplement to boost OER. Herein, a highly pseudocapacitive Ni‐Fe‐Co hydroxides/N‐doped carbon nanoplates (NiCoFe‐NC)‐based electrocatalyst is synthesized using a facile one‐pot solvothermal approach. The NiCoFe‐NC has a great pseudocapacitive performance with 1849 F g?1 specific capacitance and 31.5 Wh kg?1 energy density. This material also exhibits an excellent OER catalytic activity comparable to the benchmark RuO2 catalysts (an initiating overpotential of 160 mV and delivering 10 mA cm?2 current density at 250 mV, with a Tafel slope of 31 mV dec?1). The catalytic performance of the optimized NiCoFe‐NC catalyst could keep 24 h. X‐ray photoelectron spectroscopy, electrochemically active surface area, and other physicochemical and electrochemical analyses reveal that its great OER catalytic activity is ascribed to the Ni‐Co hydroxides with modular 2‐Dimensional layered structure, the synergistic interactions among the Fe(III) species and Ni, Co metal centers, and the improved hydrophily endowed by the incorporation of N‐doped carbon hydrogel. This work might provide a useful and general strategy to design and synthesize high‐performance metal (hydr)oxides OER electrocatalysts.  相似文献   

14.
Metal–organic framework (MOF) composites have recently been considered as promising precursors to derive advanced metal/carbon‐based materials for various energy‐related applications. Here, a dual‐MOF‐assisted pyrolysis approach is developed to synthesize Co–Fe alloy@N‐doped carbon hollow spheres. Novel core–shell architectures consisting of polystyrene cores and Co‐based MOF composite shells encapsulated with discrete Fe‐based MOF nanocrystallites are first synthesized, followed by a thermal treatment to prepare hollow composite materials composed of Co–Fe alloy nanoparticles homogeneously distributed in porous N‐doped carbon nanoshells. Benefitting from the unique structure and composition, the as‐derived Co–Fe alloy@N‐doped carbon hollow spheres exhibit enhanced electrocatalytic performance for oxygen reduction reaction. The present approach expands the toolbox for design and preparation of advanced MOF‐derived functional materials for diverse applications.  相似文献   

15.
The oxygen reduction reaction (ORR) is a core reaction for electrochemical energy technologies such as fuel cells and metal–air batteries. ORR catalysts have been limited to platinum, which meets the requirements of high activity and durability. Over the last few decades, a variety of materials have been tested as non‐Pt catalysts, from metal–organic complex molecules to metal‐free catalysts. In particular, nitrogen‐doped graphitic carbon materials, including N‐doped graphene and N‐doped carbon nanotubes, have been extensively studied. However, due to the lack of understanding of the reaction mechanism and conflicting knowledge of the catalytic active sites, carbon‐based catalysts are still under the development stage of achieving a performance similar to Pt‐based catalysts. In addition to the catalytic viewpoint, designing mass transport pathways is required for O2. Recently, the importance of pyridinic N for the creation of active sites for ORR and the requirement of hydrophobicity near the active sites have been reported. Based on the increased knowledge in controlling ORR performances, bottom‐up preparation of N‐doped carbon catalysts, using N‐containing conjugative molecules as the assemblies of the catalysts, is promising. Here, the recent understanding of the active sites and the mechanism of ORRs on N‐doped carbon catalysts are reviewed.  相似文献   

16.
Designing rational nanostructures of metal–organic frameworks based carbon materials to promote the bifunctional catalytic activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desired but still remains a great challenge. Herein, an in situ growth method to achieve 1D structure‐controllable zeolitic imidazolate frameworks (ZIFs)/polyacrylonitrile (PAN) core/shell fiber (PAN@ZIFs) is developed. Subsequent pyrolysis of this precursor can obtain a heteroatom‐doped carbon nanofiber network as an efficient bifunctional oxygen electrocatalyst. The electrocatalytic performance of derived carbon nanofiber is dominated by the structures of PAN@ZIFs fiber, which is facilely regulated by efficiently controlling the nucleation and growth process of ZIFs on the surface of polymer fiber as well as optimizing the components of ZIFs. Benefiting from the core–shell structures with appropriate dopants and porosity, as‐prepared catalysts show brilliant bifunctional ORR/OER catalytic activity and durability. Finally, the rechargeable Zn‐air battery assembled from the optimized catalyst (CNF@Zn/CoNC) displays a peak power density of 140.1 mW cm?2, energy density of 878.9 Wh kgZn?1, and excellent cyclic stability over 150 h, giving a promising performance in realistic application.  相似文献   

17.
Proper design and simple preparation of nonnoble bifunctional electrocatalysts with high cost performance and strong durability for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is highly demanded but still full of enormous challenges. In this work, a spontaneous gas‐foaming strategy is presented to synthesize cobalt nanoparticles confined in 3D nitrogen‐doped porous carbon foams (CoNCF) by simply carbonizing the mixture of citric acid, NH4Cl, and Co(NO3)2·6H2O. Thanks to its particular 3D porous foam architecture, ultrahigh specific surface area (1641 m2 g?1), and homogeneous distribution of active sites (C–N, Co–Nx, and Co–O moieties), the optimized CoNCF‐1000‐80 (carbonized at 1000 °C, containing 80 mg Co(NO3)2·6H2O in precursors) catalyst exhibits a remarkable bifunctional activity and long‐term durability toward both ORR and OER. Its bifunctional activity parameter (ΔE) is as low as 0.84 V, which is much smaller than that of noble metal catalyst and comparable to state‐of‐the‐art bifunctional catalysts. When worked as an air electrode catalyst in rechargeable Zn–air batteries, a high energy density (797 Wh kg?1), a low charge/discharge voltage gap (0.75 V), and a long‐term cycle stability (over 166 h) are achieved at 10 mA cm?2.  相似文献   

18.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu?N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu?N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N?Cu(II)?Cu0 in derived Cu?N/C catalysts. As a result, the optimized 25% Cu?N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

19.
Ultrathin ZnIn2S4 nanosheets (NSs) are grown on Co/N‐doped graphitic carbon (NGC) nanocages, composed of Co nanoparticles surrounded by few‐layered NGC, to obtain hierarchical Co/NGC@ZnIn2S4 hollow heterostructures for photocatalytic H2 generation with visible light. The photoredox functions of discrete Co, conductive NGC, and ZnIn2S4 NSs are precisely combined into hierarchical composite cages possessing strongly hybridized shell and ultrathin layered substructures. Such structural and compositional virtues can expedite charge separation and mobility, offer large surface area and abundant reactive sites for water photosplitting. The Co/NGC@ZnIn2S4 photocatalyst exhibits outstanding H2 evolution activity (e.g., 11270 µmol h?1 g?1) and high stability without engaging any cocatalyst.  相似文献   

20.
Obtaining bifunctional electrocatalysts with high activity for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is a main hurdle in the application of rechargeable metal‐air batteries. Earth‐abundant 3d transition metal‐based catalysts have been developed for the OER and ORR; however, most of these are based on oxides, whose insulating nature strongly restricts their catalytic performance. This study describes a metallic Ni‐Fe nitride/nitrogen‐doped graphene hybrid in which 2D Ni‐Fe nitride nanoplates are strongly coupled with the graphene support. Electronic structure of the Ni‐Fe nitride is changed by hybridizing with the nitrogen‐doped graphene. The unique heterostructure of this hybrid catalyst results in very high OER activity with the lowest onset overpotential (150 mV) reported, and good ORR activity comparable to that for commercial Pt/C. The high activity and durability of this bifunctional catalyst are also confirmed in rechargeable zinc‐air batteries that are stable for 180 cycles with an overall overpotential of only 0.77 V at 10 mA?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号