首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

2.
Highly efficient solution‐processable emitters, especially deep‐blue emitters, are greatly desired to develop low‐cost and low‐energy‐consumption organic light‐emitting diodes (OLEDs). A recently developed class of potentially metal‐free emitters, thermally activated delayed fluorescence (TADF) materials, are promising candidates, but solution‐processable TADF materials with efficient blue emissions are not well investigated. In this study, first the requirements for the design of efficient deep‐blue TADF materials are clarified, on the basis of which, adamantyl‐substituted TADF molecules are developed. The substitution not only endows high solubility and excellent thermal stability but also has a critical impact on the molecular orbitals, by pushing up the lowest unoccupied molecular orbital energy and triplet energy of the molecules. In the application to OLEDs, an external quantum efficiency (EQE) of 22.1% with blue emission having Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.19) is realized. A much deeper blue emission with CIE (0.15, 0.13) is also achieved, with an EQE of 11.2%. These efficiencies are the best yet among solution‐processed TADF OLEDs of CIE y < 0.20 and y < 0.15, as far as known. This work demonstrates the validity of adamantyl substitution and paves a pathway for straightforward realization of solution‐processable efficient deep‐blue TADF emitters.  相似文献   

3.
Researchers have spared no effort to design new thermally activated delayed fluorescence (TADF) emitters for high‐efficiency organic light‐emitting diodes (OLEDs). However, efficient long‐wavelength TADF emitters are rarely reported. Herein, a red TADF emitter, TPA–PZCN, is reported, which possesses a high photoluminescence quantum yield (ΦPL) of 97% and a small singlet–triplet splitting (ΔEST) of 0.13 eV. Based on the superior properties of TPA–PZCN, red, deep‐red, and near‐infrared (NIR) OLEDs are fabricated by utilizing different device structure strategies. The red devices obtain a remarkable maximum external quantum efficiency (EQE) of 27.4% and an electroluminescence (EL) peak at 628 nm with Commission Internationale de L'Eclairage (CIE) coordinates of (0.65, 0.35), which represents the best result with a peak wavelength longer than 600 nm among those of the reported red TADF devices. Furthermore, an exciplex‐forming cohost strategy is adopted. The devices achieve a record EQE of 28.1% and a deep‐red EL peak at 648 nm with the CIE coordinates of (0.66, 0.34). Last, nondoped devices exhibit 5.3% EQE and an NIR EL peak at 680 nm with the CIE coordinates of (0.69, 0.30).  相似文献   

4.
Deep‐blue emitting Iridium (Ir) complexes with horizontally oriented emitting dipoles are newly designed and synthesized through engineering of the ancillary ligand, where 2′,6′‐difluoro‐4‐(trimethylsilyl)‐2,3′‐bipyridine (dfpysipy) is used as the main ligand. Introduction of a trimethylsilyl group at the pyridine and a nitrogen at the difluoropyrido group increases the bandgap of the emitter, resulting in deep‐blue emission. Addition of a methyl group (mpic) to a picolinate (pic) ancillary ligand or replacement of an acetate structure of pic with a perfluoromethyl‐triazole structure (fptz) increases the horizontal component of the emitting dipoles in sequence of mpic (86%) > fptz (77%) > pic (74%). The organic light‐emitting diode (OLED) using the Ir complex with the mpic ancillary ligand shows the highest external quantum efficiency (31.9%) among the reported blue OLEDs with a y‐coordinate value lower than 0.2 in the 1931 Commission Internationale de L'Eclairage (CIE) chromaticity diagram.  相似文献   

5.
Circularly polarized organic light‐emitting diodes (CP‐OLEDs) are particularly favorable for the direct generation of CP light, and they demonstrate a promising application in 3D display. However, up to now, such CP devices have suffered from low brightness, insufficient efficiency, and serious efficiency roll‐off. In this study, a pair of octahydro‐binaphthol ( OBN )‐based chiral emitting enantiomers, (R/S)‐OBN‐Cz , are developed by ingeniously merging a chiral source and a luminophore skeleton. These chirality–acceptor–donor (C–A–D)‐type and rod‐like compounds concurrently generate thermally activated delayed fluorescence with a small ΔEST of 0.037 eV, as well as a high photoluminescence quantum yield of 92% and intense circularly polarized photoluminescence with dissymmetry factors (|gPL|) of ≈2.0 × 10?3 in thin films. The CP‐OLEDs based on (R/S)‐OBN‐Cz enantiomers not only display obvious circularly polarized electroluminescence signals with a |gEL| of ≈2.0 × 10?3, but also exhibit superior efficiencies with maximum external quantum efficiency (EQEmax) up to 32.6% and extremely low efficiency roll‐off with an EQE of 30.6% at 5000 cd m?2, which are the best performances among the reported CP devices to date.  相似文献   

6.
Recently, great progress has been made in the device performance of deep blue phosphorescent organic light‐emitting diodes (PHOLEDs) by developing high triplet energy charge‐transport materials, high triplet energy host and deep blue emitting phosphorescent dopant materials. A high quantum efficiency of over 25% and a high power efficiency of over 15 lm/W have already been achieved at 1000 cd m?2 in the deep blue PHOLEDs with a y color coordinate less than 0.20. In this work, recent developments in organic materials for high efficiency deep blue PHOLEDs are reviewed and a future strategy for the development of high efficiency deep blue PHOLEDs is proposed.  相似文献   

7.
Lead‐(Pb‐) halide perovskite nanocrystals (NCs) are interesting nanomaterials due to their excellent optical properties, such as narrow‐band emission, high photoluminescence (PL) efficiency, and wide color gamut. However, these NCs have several critical problems, such as the high toxicity of Pb, its tendency to accumulate in the human body, and phase instability. Although Pb‐free metal (Bi, Sn, etc.) halide perovskite NCs have recently been reported as possible alternatives, they exhibit poor optical and electrical properties as well as abundant intrinsic defect sites. For the first time, the synthesis and optical characterization of cesium ytterbium triiodide (CsYbI3) cubic perovskite NCs with highly uniform size distribution and high crystallinity using a simple hot‐injection method are reported. Strong excitation‐independent emission and high quantum yields for the prepared NCs are verified using photoluminescence measurements. Furthermore, these CsYbI3 NCs exhibit potential for use in organic–inorganic hybrid photodetectors as a photoactive layer. The as‐prepared samples exhibit clear on–off switching behavior as well as high photoresponsivity (2.4 × 103 A W?1) and external quantum efficiency (EQE, 5.8 × 105%) due to effective exciton dissociation and charge transport. These results suggest that CsYbI3 NCs offer tremendous opportunities in electronic and optoelectronic applications, such as chemical sensors, light emitting diodes (LEDs), and energy conversion and storage devices.  相似文献   

8.
Maintaining high efficiency at high brightness levels is an exigent challenge for real‐world applications of thermally activated delayed fluorescent organic light‐emitting diodes (TADF‐OLEDs). Here, versatile indolocarbazole‐isomer derivatives are developed as highly emissive emitters and ideal hosts for TADF‐OLEDs to alleviate efficiency roll‐off. It is observed that photophysical and electronic properties of these compounds can be well modulated by varying the indolocarbazole isomers. A photoluminescence quantum yield (ηPL) approaching unity and a maximum external quantum efficiency (EQEmax) of 25.1% are obtained for the emitter with indolo[3,2‐a]carbazolyl subunit. Remarkably, record‐high EQE/power efficiency of 26.2%/69.7 lm W?1 at the brightness level of 5000 cd m?2 with a voltage of only 3.74 V are also obtained using the same isomer as the host in a green TADF‐OLED. It is evident that TADF hosts with high ηPL values, fast reverse intersystem crossing processes, and balanced charge transport properties may open the path toward roll‐off‐free TADF‐OLEDs.  相似文献   

9.
State‐of‐the‐art light‐emitting diodes (LEDs) are made from high‐purity alloys of III–V semiconductors, but high fabrication cost has limited their widespread use for large area solid‐state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase‐pure 2D Ruddlesden–Popper (RP) halide perovskites with a formula (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr?1 cm?2 at 744 nm with an ultralow turn‐on voltage of 1 V is obtained. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase‐pure 2D perovskites exhibit >14 h of stable operation at peak operating conditions with no droop at current densities of several Amperes cm?2 in comparison to mixtures of 2D/3D or 3D perovskites, which degrade within minutes.  相似文献   

10.
Experimental studies to reveal the cooperative relationship between spin, energy, and polarization through intermolecular charge‐transfer dipoles to harvest nonradiative triplets into radiative singlets in exciplex light‐emitting diodes are reported. Magneto‐photoluminescence studies reveal that the triplet‐to‐singlet conversion in exciplexes involves an artificially generated spin‐orbital coupling (SOC). The photoinduced electron parametric resonance measurements indicate that the intermolecular charge‐transfer occurs with forming electric dipoles (D+?→A??), providing the ionic polarization to generate SOC in exciplexes. By having different singlet‐triplet energy differences (ΔEST) in 9,9′‐diphenyl‐9H,9′H‐3,3′‐bicarbazole (BCzPh):3′,3′″,3′″″‐(1,3,5‐triazine‐2,4,6‐triyl)tris(([1,1′‐biphenyl]‐3‐carbonitrile)) (CN‐T2T) (ΔEST = 30 meV) and BCzPh:bis‐4,6‐(3,5‐di‐3‐pyridylphenyl)‐2‐methyl‐pyrimidine (B3PYMPM) (ΔEST = 130 meV) exciplexes, the SOC generated by the intermolecular charge‐transfer states shows large and small values (reflected by different internal magnetic parameters: 274 vs 17 mT) with high and low external quantum efficiency maximum, EQEmax (21.05% vs 4.89%), respectively. To further explore the cooperative relationship of spin, energy, and polarization parameters, different photoluminescence wavelengths are selected to concurrently change SOC, ΔEST, and polarization while monitoring delayed fluorescence. When the electron clouds become more deformed at a longer emitting wavelength due to reduced dipole (D+?→A??) size, enhanced SOC, increased orbital polarization, and decreased ΔEST can simultaneously occur to cooperatively operate the triplet‐to‐singlet conversion.  相似文献   

11.
Metal‐halide perovskites have emerged as promising materials for optoelectronics applications, such as photovoltaics, light‐emitting diodes, and photodetectors due to their excellent photoconversion efficiencies. However, their instability in aqueous solutions and most organic solvents has complicated their micropatterning procedures, which are needed for dense device integration, for example, in displays or cameras. In this work, a lift‐off process based on poly(methyl methacrylate) and deep ultraviolet lithography on flexible plastic foils is presented. This technique comprises simultaneous patterning of the metal‐halide perovskite with a top electrode, which results in microscale vertical device architectures with high spatial resolution and alignment properties. Hence, thin‐film transistors (TFTs) with methyl‐ammonium lead iodide (MAPbI3) gate dielectrics are demonstrated for the first time. The giant dielectric constant of MAPbI3 (>1000) leads to excellent low‐voltage TFT switching capabilities with subthreshold swings ≈80 mV decade?1 over ≈5 orders of drain current magnitude. Furthermore, vertically stacked low‐power Au‐MAPbI3‐Au photodetectors with close‐to‐ideal linear response (R2 = 0.9997) are created. The mechanical stability down to a tensile radius of 6 mm is demonstrated for the TFTs and photodetectors, simultaneously realized on the same flexible plastic substrate. These results open the way for flexible low‐power integrated (opto‐)electronic systems based on metal‐halide perovskites.  相似文献   

12.
Organic light‐emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid‐state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep‐blue‐emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep‐blue‐emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable‐angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs.  相似文献   

13.
Construction of high‐performance organic light‐emitting transistors (OLETs) remains challenging due to the limited desired organic semiconductor materials. Here, two superior high mobility emissive organic semiconductors, 2,6‐diphenylanthracene (DPA) and 2,6‐di(2‐naphthyl) anthracene (dNaAnt), are introduced into the construction of OLETs. By optimizing the device geometry for balanced ambipolar efficient charge transport and using high‐quality DPA and dNaAnt single crystals as active layers, high‐efficiency single‐component OLETs are successfully fabricated, with the demonstration of strong and spatially controlled light emission within both p‐ and n‐ conducting channels and output of high external quantum efficiency (EQE). The obtained EQE values in current devices are approaching 1.61% for DPA‐OLETs and 1.75% for dNaAnt‐based OLETs, respectively, which are the highest EQE values for single‐component OLETs in the common device configuration reported so far. Moreover, high brightnesses of 1210 and 3180 cd m?2 with current densities up to 1.3 and 8.4 kA cm?2 are also achieved for DPA‐ and dNaAnt‐based OLETs, respectively. These results demonstrate the great potential applications of high mobility emissive organic semiconductors for next‐generation rapid development of high‐performance single‐component OLETs and their related organic integrated electro‐optical devices.  相似文献   

14.
A phosphanthrene oxide host, 5,10‐diphenyl‐phosphanthrene 5,10‐dioxide ( DPDPO2A ), with intra‐ and intermolecular hydrogen bonds achieves spheroidal cis ‐configuration and close sphere packing. DPDPO2A realizes effective exciton suppression and excellent and balanced carrier transporting ability, both at the same time, demonstrating favorable photoluminescence quantum yield of 84% from its blue thermally activated delayed fluorescence (TADF) dye, namely bis[4‐(9,9‐dimethyl‐9,10‐dihydroacridine) phenyl]sulfone, doped films and high electron and hole mobility at the level of 10?4 and 10?5 cm2 V?1 s?1, respectively. DPDPO2A endows its blue TADF devices with record‐low driving voltages, e.g., turn‐on voltage of 2.5 V, and the state‐of‐the‐art efficiencies with maxima of 22.5% for external quantum efficiency and 52.9 lm W?1 for power efficiency, which is the best comprehensive performance to date of ultralow‐voltage‐driven blue TADF diodes.  相似文献   

15.
The discovery of high efficiency narrow‐band green‐emitting phosphors is a major challenge in backlighting light‐emitting diodes (LEDs). Benefitting from highly condensed and rigid framework structure of UCr4C4‐type compounds, a next‐generation narrow green emitter, RbLi(Li3SiO4)2:Eu2+ (RLSO:Eu2+), has emerged in the oxide‐based family with superior luminescence properties. RLSO:Eu2+ phosphor can be efficiently excited by GaN‐based blue LEDs, and shows green emission at 530 nm with a narrow full width at half maximum of 42 nm, and very low thermal quenching (103%@150 °C of the integrated emission intensity at 20 °C), however its chemical stability needs to be improved later. The white LED backlight using optimized RLSO:8%Eu2+ phosphor demonstrates a high luminous efficacy of 97.28 lm W?1 and a wide color gamut (107% National Television System Committee standard (NTSC) in Commission Internationale de L'Eclairage (CIE) 1931 color space), suggesting its great potential for industrial applications as liquid crystal display (LCD) backlighting.  相似文献   

16.
The characteristics of visible to near-infrared OLEDs with co-doping three phosphorescent dyes, iridium (III) bis(2-(4,6-difluorephenyl)pyridinato-N,C2′) (FIrpic), tris(1-phenylisoquinoline)iridium(III) (Ir(piq)3), Pt-tetraphenyltetrabenzoporphyrin (Pt(tpbp)) in poly(N-vinylcarbazole) host as blue, red and near-infrared emitters are investigated. Visible to near-infrared OLEDs covering the wavelength range from 450 to 850 nm were achieved. The device with 11.7 wt.% FIrpic, 0.3 wt.% Ir(piq)3 and 0.1 wt.% Pt(tpbp) showed white light emission of CIE (0.34, 0.39). The co-doping results in efficient cascade energy transfer from host through Ir complexes. For 0.1 wt.% Pt(tpbp), the optimal device exhibited the maximum output power of 3 mW/cm2, maximum luminance of 2900 cd/m2 and the maximum efficiency of 7 cd/A.  相似文献   

17.
Deep-blue triplet emitters remain far inferior to standard red and green triplet emitters in terms of exhibiting high-color-purity Commission International de l'Éclairage (CIE) y values of ≤0.1, external quantum efficiencies (EQEs), and high electroluminescent brightnesses in phosphorescent organic light-emitting diodes. In fact, no deep-blue triplet emitter with color purity and high device performance has previously been reported. In this study, a deep-blue triplet emitter, mer-tris(N-phenyl, N-benzyl-pyridoimidazol-2-yl)iridium(III) (mer-Ir1) is developed, which meets the requirements of the National Television System Committee (NTSC) CIE(x, y) coordinates of (0.149, 0.085) with an extremely high EQE of 24.8% and maximum brightness (Lmax) of 6453 cd m−2, by a device with a 40 vol% doping ratio. Moreover, another device demonstrates an EQEmax of 21.3%, an Lmax of 5247 cd m−2, and CIE(x, y) coordinates of (0.151, 0.086) at a 30 vol% doping ratio. This is the first report of a high-performance, deep-blue phosphor, carbene-based Ir(III) complex device with outstanding CIE(x, y) color coordinates and a high EQE. The results of this study indicate that the novel dopant mer-Ir1 is a promising candidate for reducing power consumption in display applications.  相似文献   

18.
Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m?2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.  相似文献   

19.
Strain regulation has become an important strategy to tune the surface chemistry and optimize the catalytic performance of nanocatalysts. Herein, the construction of atomic‐layer IrOx on IrCo nanodendrites with tunable Ir? O bond length by compressive strain effect for oxygen evolution reaction (OER) in acidic environment is demonstrated. Evidenced from in situ extended X‐ray absorption fine structure, it is shown that the compressive strain of the IrOx layer on the IrCo nanodendrites decreases gradually from 2.51% to the unstrained state with atomic layer growth (from ≈2 to ≈9 atomic layers of IrOx), resulting in the variation of the Ir? O bond length from shortened 1.94 Å to normal 1.99 Å. The ≈3 atomic‐layer IrOx on IrCo nanodendrites with an Ir? O bond length of 1.96 Å (1.51% strain) exhibits the optimal OER activity compared to the higher‐strained (2.51%, ≈2 atomic‐layer IrOx) and unstrained (>6 atomic‐layer IrOx) counterparts, with an overpotential of only 247 mV to achieve a current density of 10 mA cm?2. Density functional theory calculations reveal that the precisely tuned compressive strain effect balances the adsorbate–substrate interaction and facilitates the rate‐determining step to form HOO*, thus assuring the best performance of the three atomic‐layer IrOx for OER.  相似文献   

20.
A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F2Meppy)(PPhMe2)2(H)(Cl), [Ir(F2Meppy)(PPhMe2)2(H)(NCMe)]+ and Ir(F2Meppy)(PPhMe2)2-(H)(CN), [F2Meppy = 2-(2′,4′-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F2Meppy)(PPhMe2)2(H)(Cl), [Ir(F2Meppy)(PPhMe2)2(H)-(NCMe)]+ and Ir(F2Meppy)(PPh-Me2)2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号