首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene‐bridged donor–acceptor‐based 2D sp2‐carbon‐linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron‐accepting building block 2,3,8,9,14,15‐hexa(4‐formylphenyl) diquinoxalino[2,3‐a:2′,3′‐c]phenazine (HATN‐6CHO) and the first electron‐donating linker 2,2′‐([2,2′‐bithiophene]‐5,5′‐diyl)diacetonitrile (ThDAN) provides the 2D CCP‐HATNThDAN (2D CCP‐Th). Compared with the corresponding biphenyl‐bridged 2D CCP‐HATN‐BDAN (2D CCP‐BD), the bithiophene‐based 2D CCP‐Th exhibits a wide light‐harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP‐Th a promising candidate for PEC water reduction. As a result, 2D CCP‐Th presents a superb H2‐evolution photocurrent density up to ≈7.9 µA cm?2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm?2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2.  相似文献   

2.
Mono‐ to few‐layers of 2D semiconducting materials have uniquely inherent optical, electronic, and magnetic properties that make them ideal for probing fundamental scientific phenomena up to the 2D quantum limit and exploring their emerging technological applications. This Review focuses on the fundamental optoelectronic studies and potential applications of in‐plane isotropic/anisotropic 2D semiconducting heterostructures. Strong light–matter interaction, reduced dimensionality, and dielectric screening in mono‐ to few‐layers of 2D semiconducting materials result in strong many‐body interactions, leading to the formation of robust quasiparticles such as excitons, trions, and biexcitons. An in‐plane isotropic nature leads to the quasi‐2D particles, whereas, an anisotropic nature leads to quasi‐1D particles. Hence, in‐plane isotropic/anisotropic 2D heterostructures lead to the formation of quasi‐1D/2D particle systems allowing for the manipulation of high binding energy quasi‐1D particle populations for use in a wide variety of applications. This Review emphasizes an exciting 1D–2D particles dynamic in such heterostructures and their potential for high‐performance photoemitters and exciton–polariton lasers. Moreover, their scopes are also broadened in thermoelectricity, piezoelectricity, photostriction, energy storage, hydrogen evolution reactions, and chemical sensor fields. The unique in‐plane isotropic/anisotropic 2D heterostructures may open the possibility of engineering smart devices in the nanodomain with complex opto‐electromechanical functions.  相似文献   

3.
Determining the electronic properties of nanoscopic, low‐dimensional materials free of external influences is key to the discovery and understanding of new physical phenomena. An example is the suspension of graphene, which has allowed access to their intrinsic charge transport properties. Furthermore, suspending thin films enables their application as membranes, sensors, or resonators, as has been explored extensively. While the suspension of covalently bound, electronically active thin films is well established, semiconducting thin films composed of functional molecules only held together by van der Waals interactions could only be studied supported by a substrate. In the present work, it is shown that by utilizing a surface‐crystallization method, electron conductive films with thicknesses of down to 6 nm and planar chiral optical activity can be freely suspended across several hundreds of nanometers. The suspended membranes exhibit a Young's modulus of 2–13 GPa and are electronically decoupled from the environment, as established by temperature‐dependent field‐effect transistor measurements.  相似文献   

4.
5.
6.
Nanomeshes with highly regular, permeable pores in plane, combining the exceptional porous architectures with intrinsic properties of 2D materials, have attracted increasing attention in recent years. Herein, a series of 2D ultrathin metal–organic nanomeshes with ordered mesopores is obtained by a self‐assembly method, including metal phosphate and metal phosphonate. The resultant mesoporous ferric phytate nanomeshes feature unique 2D ultrathin monolayer morphologies ( ≈ 9 nm thickness), hexagonally ordered, permeable mesopores of ≈ 16 nm, as well as improved surface area and pore volume. Notably, the obtained ferric phytate nanomeshes can directly in situ convert into mesoporous sulfur‐doped metal phosphonate nanomeshes by serving as an unprecedented reactive self‐template. Furthermore, as advanced anode materials for Li‐ion batteries, they deliver excellent capacity, good rate capability, and cycling performance, greatly exceeding the similar metal phosphate‐based materials reported previously, resulting from their unique 2D ultrathin mesoporous structure. Therefore, the work will pave an avenue for constructing the other 2D ordered mesoporous materials, and thus offer new opportunities for them in diverse areas.  相似文献   

7.
van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on‐demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self‐assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design.  相似文献   

8.
Printing techniques using nanomaterials have emerged as a versatile tool for fast prototyping and potentially large-scale manufacturing of functional devices. Surfactants play a significant role in many printing processes due to their ability to reduce interfacial tension between ink solvents and nanoparticles and thus improve ink colloidal stability. Here, a colloidal graphene quantum dot (GQD)-based nanosurfactant is reported to stabilize various types of 2D materials in aqueous inks. In particular, a graphene ink with superior colloidal stability is demonstrated by GQD nanosurfactants via the π–π stacking interaction, leading to the printing of multiple high-resolution patterns on various substrates using a single printing pass. It is found that nanosurfactants can significantly improve the mechanical stability of the printed graphene films compared with those of conventional molecular surfactant, as evidenced by 100 taping, 100 scratching, and 1000 bending cycles. Additionally, the printed composite film exhibits improved photoconductance using UV light with 400 nm wavelength, arising from excitation across the nanosurfactant bandgap. Taking advantage of the 3D conformal aerosol jet printing technique, a series of UV sensors of heterogeneous structures are directly printed on 2D flat and 3D spherical substrates, demonstrating the potential of manufacturing geometrically versatile devices based on nanosurfactant inks.  相似文献   

9.
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.  相似文献   

10.
Heterojunctions formed from low‐dimensional materials can result in photovoltaic and photodetection devices displaying exceptional physical properties and excellent performance. Herein, a mixed‐dimensional van der Waals (vdW) heterojunction comprising a 1D n‐type Ga‐doped CdS nanowire and a 2D p‐type MoTe2 flake is demonstrated; the corresponding photovoltaic device exhibits an outstanding conversion efficiency of 15.01% under illumination with white light at 650 µW cm?2. A potential difference of 80 meV measured, using Kelvin probe force microscopy, at the CdS–MoTe2 interface confirms the separation and accumulation of photoexcited carriers upon illumination. Moreover, the photodetection characteristics of the vdW heterojunction device at zero bias reveal a rapid response time (<50 ms) and a photoresponsivity that are linearly proportional to the power density of the light. Interestingly, the response of the vdW heterojunction device is negligible when illuminated at 580 nm; this exceptional behavior is presumably due to the rapid rate of recombination of the photoexcited carriers of MoTe2. Such mixed‐dimensional vdW heterojunctions appear to be novel design elements for efficient photovoltaic and self‐driven photodetection devices.  相似文献   

11.
12.
13.
14.
Metal–organic frameworks (MOFs) are composed of particles with 3D geometry and are currently among the most widely studied heterogeneous catalysts. To further increase their activity, one of the recent trends is to develop related 2D materials with a high aspect ratio derived from a large lateral size and a small thickness. Here, the use of these 2D MOFs as catalysts, electrocatalysts, and photocatalysts is summarized, illustrating the advantages of these 2D materials compared to analogous 3D MOFs. The state of the art is summarized in tables and, when possible, pertinent turnover number (TON) and frequency (TOF) values. This enhanced activity of 2D MOFs derives from the accessibility of the active sites, the presence of a higher density of defects, and exchangeable coordination positions around the MOFs, as well as from their ability to form thin films on electrodes or surfaces. The importance of providing convincing evidence of the stability of 2D MOFs under reaction conditions and general characterization data of the used 2D material after catalysis is highlighted. In the last part, views regarding challenges in the field and new developments that can be expected are presented.  相似文献   

15.
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light‐emitting devices, and photodiodes. In this work, high‐performance photovoltaic photodetectors based on MoTe2/MoS2 vertical heterojunctions are demonstrated by exfoliating‐restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W?1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications.  相似文献   

16.
17.
18.
2D transition metal dichalcogenides are promising channel materials for the next‐generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS2) few layers and organic crystal – 5,6,11,12‐tetraphenylnaphthacene (rubrene). In this work, ambipolar field‐effect transistors are successfully achieved based on MoS2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm2 V?1 s?1, respectively. The ambipolar behavior is explained based on the band alignment of MoS2 and rubrene. Furthermore, being a building block, the MoS2/rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of ?26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号