首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid‐infrared (mid‐IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon–phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon–phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon–phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid‐infrared plasmon sources.  相似文献   

2.
Plasmon‐mediated photocatalytic systems generally suffer from poor efficiency due to weak absorption overlap and thus limited energy transfer between the plasmonic metal and the semiconductor. Herein, a near‐ideal plasmon‐mediated photocatalyst system is developed. Au/CdSe nanocrystal clusters (NCs) are successfully fabricated through a facile emulsion‐based self‐assembly approach, containing Au nanoparticles (NPs) of size 2.8, 4.6, 7.2, or 9.0 nm and CdSe quantum dots (QDs) of size ≈3.3 nm. Under visible‐light irradiation, the Au/CdSe NCs with 7.2 nm Au NPs afford very stable operation and a remarkable H2‐evolution rate of (10× higher than bare CdSe NCs). Plasmon resonance energy transfer from the Au NPs to the CdSe QDs, which enhances charge‐carrier generation in the semiconductor and suppresses bulk recombination, is responsible for the outstanding photocatalytic performance. The approach used here to fabricate the Au/CdSe NCs is suitable for the construction of other plasmon‐mediated photocatalysts.  相似文献   

3.
The gate‐tunable wide‐band absorption of graphene makes it suitable for light modulation from terahertz to visible light. The realization of graphene‐based modulators, however, faces challenges connected with graphene's low absorption and the high electric fields necessary to change graphene's optical conductivity. Here, a solid‐state supercapacitor effect with the high‐k dielectric hafnium oxide is demonstrated that allows modulation from the near‐infrared to shorter wavelengths close to the visible spectrum with remarkably low voltages (≈3 V). The electroabsorption modulators are based on a Fabry–Perot‐resonator geometry that allows modulation depths over 30% for free‐space beams.  相似文献   

4.
2D nanomaterials are finding numerous applications in next‐generation electronics, consumer goods, energy generation and storage, and healthcare. The rapid rise of utility and applications for 2D nanomaterials necessitates developing means for their mass production. This study details a new compressible flow exfoliation method for producing 2D nanomaterials using a multiphase flow of 2D layered materials suspended in a high‐pressure gas undergoing expansion. The expanded gas–solid mixture is sprayed in a suitable solvent, where a significant portion (up to 10% yield) of the initial hexagonal boron nitride material is found to be exfoliated with a mean thickness of 4.2 nm. The exfoliation is attributed to the high shear rates ( > 105 s?1) generated by supersonic flow of compressible gases inside narrow orifices and converging‐diverging channels. This method has significant advantages over current 2D material exfoliation methods, such as chemical intercalation and exfoliation, as well as liquid phase shear exfoliation, with the most obvious benefit being the fast, continuous nature of the process. Other advantages include environmentally friendly processing, reduced occurrence of defects, and the versatility to be applied to any 2D layered material using any gaseous medium. Scaling this process to industrial production has a strong possibility of reducing the cost of creating 2D nanomaterials.  相似文献   

5.
Electrochemical reduction of CO2 is a compelling route to store renewable electricity in the form of carbon‐based fuels. Efficient electrochemical reduction of CO2 requires catalysts that combine high activity, high selectivity, and low overpotential. Extensive surface reconstruction of metal catalysts under high productivity operating conditions (high current densities, reducing potentials, and variable pH) renders the realization of tailored catalysts that maximize the exposure of the most favorable facets, the number of active sites, and the oxidation state all the more challenging. Earth‐abundant transition metals such as tin, bismuth, and lead have been proven stable and product‐specific, but exhibit limited partial current densities. Here, a strategy that employs bismuth oxyhalides as a template from which 2D bismuth‐based catalysts are derived is reported. The BiOBr‐templated catalyst exhibits a preferential exposure of highly active Bi () facets. Thereby, the CO2 reduction reaction selectivity is increased to over 90% Faradaic efficiency and simultaneously stable current densities of up to 200 mA cm?2 are achieved—more than a twofold increase in the production of the energy‐storage liquid formic acid compared to previous best Bi catalysts.  相似文献   

6.
With unusual electromagnetic radiation properties and great application potentials, optical toroidal moments have received increasing interest in recent years. 3D metamaterials composed of split ring resonators with specific orientations in micro‐/nanoscale are a perfect choice for toroidal moment realization in optical frequency considering the excellent magnetic confinement and quality factor, which, unfortunately, are currently beyond the reach of existing micro‐/nanofabrication techniques. Here, a 3D toroidal metamaterial operating in mid‐infrared region constructed by metal patterns and dielectric frameworks is designed, by which high‐quality‐factor toroidal resonance is observed experimentally. The toroidal dipole excitation is confirmed numerically and further demonstrated by phase analysis. Furthermore, the far‐field radiation intensity of the excited toroidal dipoles can be adjusted to be predominant among other multipoles by just tuning the incident angle. The related processing method expands the capability of focused ion beam folding technologies greatly, especially in 3D metamaterial fabrication, showing great flexibility and nanoscale controllability on structure size, position, and orientation.  相似文献   

7.
This study uses graphene oxide quantum dots (GOQDs) to enhance the Li+‐ion mobility of a gel polymer electrolyte (GPE) for lithium‐ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile‐co‐vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3?11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion?solvent clusters and immobilize anions, affording the GPE a high ionic conductivity and a high Li+‐ion transference number (0.77). When assembled into Li|electrolyte|LiFePO4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge?discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion?solvent clusters and degree of Li+‐ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li‐metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion?solvent coordination in GPEs and thus improve the performance and lifespan of LIBs.  相似文献   

8.
The design of many promising, newly emerging classes of photonic metamaterials and subwavelength confinement structures requires detailed knowledge and understanding of the electromagnetic near‐field interactions between their building blocks. While the electric field distributions and, respectively, the electric interactions of different nanostructures can be routinely measured, for example, by scattering near‐field microscopy, only recently experimental methods for imaging the magnetic field distributions became available. In this paper, we provide direct experimental maps of the lateral magnetic near‐field distributions of variously shaped plasmonic nanoantennas by using hollow‐pyramid aperture scanning near‐field optical microscopy (SNOM). We study both simple plasmonic nanoresonators, such as bars, disks, rings and more complex antennas. For the studied structures, the magnetic near‐field distributions of the complex resonators have been found to be a superposition of the magnetic near‐fields of the individual constituting elements. These experimental results, explained and validated by numerical simulations, open new possibilities for engineering and characterization of complex plasmonic antennas with increased functionality.  相似文献   

9.
The control of magnetism by means of low‐power electric fields, rather than dissipative flowing currents, has the potential to revolutionize conventional methods of data storage and processing, sensing, and actuation. A promising strategy relies on the utilization of magnetoelectric composites to finely tune the interplay between electric and magnetic degrees of freedom at the interface of two functional materials. Albeit early works predominantly focused on the magnetoelectric coupling at solid/solid interfaces; however, recently there has been an increased interest related to the opportunities offered by liquid‐gating techniques. Here, a comparative overview on voltage control of magnetism in all‐solid‐state and solid/liquid composites is presented within the context of the principal coupling mediators, i.e., strain, charge carrier doping, and ionic intercalation. Further, an exhaustive and critical discussion is carried out, concerning the suitability of using the common definition of coupling coefficient α C = Δ M Δ E to compare the strength of the interaction between electricity and magnetism among different magnetoelectric systems.  相似文献   

10.
Graphene‐based nanomaterials are increasingly being explored for use as biomaterials for drug delivery and tissue engineering applications due to their exceptional physicochemical and mechanical properties. However, the two‐dimensional nature of graphene makes it difficult to extend its applications beyond planar tissue culture. Here, graphene–cell biocomposites are used to pre‐concentrate growth factors for chondrogenic differentiation. Bone marrow‐derived mesenchymal stem cells (MSCs) are assembled with graphene flakes in the solution to form graphene‐cell biocomposites. Increasing concentrations of graphene (G) and porous graphene oxide (pGO) are found to correlate positively with the extent of differentiation. However, beyond a certain concentration, especially in the case of graphene oxide, it will lead to decreased chondrogenesis due to increased diffusional barrier and cytotoxic effects. Nevertheless, these findings indicate that both G and pGO could serve as effective pre‐concentration platforms for the construction of tissue‐engineered cartilage and suspension‐based cultures in vitro.  相似文献   

11.
Graphene, the thinnest two dimensional carbon material, has become the subject of intensive investigation in various research fields because of its remarkable electronic, mechanical, optical and thermal properties. Graphene‐based electrodes, fabricated from mechanically cleaved graphene, chemical vapor deposition (CVD) grown graphene, or massively produced graphene derivatives from bulk graphite, have been applied in a broad range of applications, such as in light emitting diodes, touch screens, field‐effect transistors, solar cells, supercapacitors, batteries, and sensors. In this Review, after a short introduction to the properties and synthetic methods of graphene and its derivatives, we will discuss the importance of graphene‐based electrodes, their fabrication techniques, and application areas.  相似文献   

12.
Graphene‐based sheets that possess a unique nanostructure and a variety of fascinating properties are appealing as promising nanoscale building blocks of new composites. Herein, graphene oxide sheets are used as the nanoscale substrates for the formation of silver‐nanoparticle films. These silver‐nanoparticle films assembled on graphene oxide sheets are flexible and can form stable suspensions in aqueous solutions. They can also be easily processed, forming macroscopic films with high reflectivity. Raman signals of graphene oxide in such hybrid films are increased by the attached silver nanoparticles, displaying surface‐enhanced Raman scattering activity. The degree of enhancement can be adjusted by varying the quantity of silver nanoparticles on the graphene oxide sheets.  相似文献   

13.
Graphene is a promising candidate material for high‐speed and ultra‐broadband photodetectors. However, graphene‐based photodetectors suffer from low photoreponsivity and Ilight/Idark ratios due to their negligible‐gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photoresponsivity of 0.5 AW?1 and Ilight/Idark ratio of 5 × 102, while the photoresponsivity and Ilight/Idark ratio of graphene infrared photodetectors are 0.1 mAW?1 and 1, respectively. The Fermi level (EF ) of graphene can be widely tuned by the gate voltage owing to its 2D nature. As a result, the back‐gated bias can modulate the Schottky barrier (SB) height at the interface between graphene and InAs NWs. Simulations further demonstrate the rectification behavior of graphene/InAs NW heterojunctions and the tunable SB controls charge transport across the vertically stacked heterostructure. The results address key challenges for graphene‐based infrared detectors, and are promising for the development of graphene electronic and optoelectronic applications.  相似文献   

14.
Exposure of dentinal tubules (DTs) leads to the transmission of external stimuli within the DTs, causing dental hypersensitivity (DH). To treat DH, various desensitizers have been developed for occluding DTs. However, most desensitizers commercially available or in development are only able to seal the orifices, rather than the deep regions of the DTs, thus lacking long‐term stability. Herein, it is shown that the fast amyloid‐like aggregation of lysozyme (lyso) conjugated with poly(ethylene glycol) (PEG) (lyso‐PEG) can afford a robust ultrathin nanofilm on the deep walls of DTs through a rapid one‐step aqueous coating process (in 2 min). The resultant nanofilm provides a highly effective antifouling platform for resisting the attachment of oral bacteria such as Streptococcus mutans and induces remineralization in the DTs to seal both the orifices and depths of the DTs by forming hydroxyapatite (HAp) minerals in situ. Both in vitro and in vivo animal experiments prove that the nanofilm‐coated DTs are occluded with a depth of over 60 ± 5 µ m, which is at least 6 times deeper than that reported in the literature. This approach thus demonstrates the concept that an amyloid‐like proteinaceous nanofilm can offer an inexpensive, rapid, and efficient therapy for treating DH with long‐term effect.  相似文献   

15.
The formation of ordered arrays of molecules via self‐assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self‐assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self‐assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non‐epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker‐interacting epitaxial graphene films, and on non‐epitaxial graphene transferred onto a host substrate, self‐assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self‐assembly on a wide range of surfaces.  相似文献   

16.
Graphene has demonstrated great potential in new‐generation electronic applications due to its unique electronic properties such as large carrier Fermi velocity, ultrahigh carrier mobility, and high material stability. Interestingly, the electronic structures can be further engineered in multilayer graphene by the introduction of a twist angle between different layers to create van Hove singularities (vHSs) at adjustable binding energy. In this work, using angle‐resolved photoemission spectroscopy with sub‐micrometer spatial resolution, the band structures and their evolution are systematically studied with twist angle in bilayer and trilayer graphene sheets. A doping effect is directly observed in graphene multilayer system as well as vHSs in bilayer graphene over a wide range of twist angles (from 5° to 31°) with wide tunable energy range over 2 eV. In addition, the formation of multiple vHSs (at different binding energies) is also observed in trilayer graphene. The large tuning range of vHS binding energy in twisted multilayer graphene provides a promising material base for optoelectrical applications with broadband wavelength selectivity from the infrared to the ultraviolet regime, as demonstrated by an example application of wavelength selective photodetector.  相似文献   

17.
石墨烯是一种新型的二维纳米材料,因独特的电学和力学性质而备受关注。近年来,一系列针对石墨烯谐振特性及其应用的研究得到广泛开展,已显示出石墨烯在谐振式纳机电传感器领域巨大的应用潜力。简要描述了石墨烯优异的物理性能和目前主要的几种石墨烯制备工艺现状,重点介绍了近期石墨谐振器的实验、理论研究以及石墨烯谐振器在压力、加速度和质量等物理量传感器方面的应用进展,其中主要围绕石墨烯谐振敏感结构、敏感机理和研究方法等方面进行评述,并分析了石墨烯谐振式传感器研发所面临的挑战和发展前景。  相似文献   

18.
A high‐performance top‐gated graphene field‐effect transistor (FET) with excellent mechanical flexibility is demonstrated by implementing a surface‐energy‐engineered copolymer gate dielectric via a solvent‐free process called initiated chemical vapor deposition. The ultrathin, flexible copolymer dielectric is synthesized from two monomers composed of 1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane and 1‐vinylimidazole (VIDZ). The copolymer dielectric enables the graphene device to exhibit excellent dielectric performance and substantially enhanced mechanical flexibility. The p‐doping level of the graphene can be tuned by varying the polar VIDZ fraction in the copolymer dielectric, and the Dirac voltage (VDirac) of the graphene FET can thus be systematically controlled. In particular, the VDirac approaches neutrality with higher VIDZ concentrations in the copolymer dielectric, which minimizes the carrier scattering and thereby improves the charge transport of the graphene device. As a result, the graphene FET with 20 nm thick copolymer dielectrics exhibits field‐effect hole and electron mobility values of over 7200 and 3800 cm2 V?1 s?1, respectively, at room temperature. These electrical characteristics remain unchanged even at the 1 mm bending radius, corresponding to a tensile strain of 1.28%. The formed gate stack with the copolymer gate dielectric is further investigated for high‐frequency flexible device applications.  相似文献   

19.
The mode volume and Purcell factor are two important parameters to assess the performance of optical nanocavities. Achieving small mode volumes and high Purcell factors for nanocavity structures while simplifying their fabrication has been a major task to realize high‐performance and large‐scale photonic devices and systems. Different optical resonators based on nanoparticle‐on‐mirror (NPoM) structures are systematically analyzed, which are easy to fabricate and flexible to use. Direct comparison of these optical resonators is made through finite‐difference time‐domain (FDTD) simulations. The achievement of ultrasmall mode volumes below 10?7 based on the NPoM structure through FDTD simulations is demonstrated by rationally selecting the structural parameters. Such NPoM structures provide a decent Purcell factor on the order of 107, which can effectively enhance spontaneous emission and facilitate a number of photonic applications. The simulation results are confirmed by dark field scattering and second‐harmonic generation measurements. This work is scientifically important and offers practical guidelines for the design of optical resonators for state‐of‐the‐art optical and photonic devices.  相似文献   

20.
The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high‐quality material on technologically relevant substrates, over wafer‐scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal‐catalysts or yielding defective graphene. In this work, a metal‐free approach implemented in commercially available reactors to obtain high‐quality monolayer graphene on c‐plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al‐rich reconstruction 31 × 31 R ± 9 ° of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high‐quality graphene with mobilities consistently above 2000 cm2 V?1 s?1. The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back‐end‐of‐line integration. The growth process introduced here establishes a method for the synthesis of wafer‐scale graphene films on a technologically viable basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号