首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐performance flexible lithium–oxygen (Li–O2) batteries with excellent safety and stability are urgently required due to the rapid development of flexible and wearable devices. Herein, based on an integrated solid‐state design by taking advantage of component‐interaction between poly(vinylidene fluoride‐co‐hexafluoropropylene) and nanofumed silica in polymer matrix, a stable quasi‐solid‐state electrolyte (PS‐QSE) for the Li–O2 battery is proposed. The as‐assembled Li–O2 battery containing the PS‐QSE exhibits effectively improved anodic reversibility (over 200 cycles, 850 h) and cycling stability of the battery (89 cycles, nearly 900 h). The improvement is attributed to the stability of the PS‐QSE (including electrochemical, chemical, and mechanical stability), as well as the effective protection of lithium anode from aggressive soluble intermediates generated in cathode. Furthermore, it is demonstrated that the interaction among the components plays a pivotal role in modulating the Li‐ion conducting mechanism in the as‐prepared PS‐QSE. Moreover, the pouch‐type PS‐QSE based Li–O2 battery also shows wonderful flexibility, tolerating various deformations thanks to its integrated solid‐state design. Furthermore, holes can be punched through the Li–O2 battery, and it can even be cut into any desired shape, demonstrating exceptional safety. Thus, this type of battery has the potential to meet the demands of tailorability and comformability in flexible and wearable electronics.  相似文献   

2.
To achieve a high reversibility and long cycle life for Li–O2 battery system, the stable tissue‐directed/reinforced bifunctional separator/protection film (TBF) is in situ fabricated on the surface of metallic lithium anode. It is shown that a Li–O2 cell composed of the TBF‐modified lithium anodes exhibits an excellent anodic reversibility (300 cycles) and effectively improved cathodic long lifetime (106 cycles). The improvement is attributed to the ability of the TBF, which has chemical, electrochemical, and mechanical stability, to effectively prevent direct contact between the surface of the lithium anode and the highly reactive reduced oxygen species (Li2O2 or its intermediate LiO2) in cell. It is believed that the protection strategy describes here can be easily extended to other next‐generation high energy density batteries using metal as anode including Li–S and Na–O2 batteries.  相似文献   

3.
The Li–CO2 battery is a promising energy storage device for wearable electronics due to its long discharge plateau, high energy density, and environmental friendliness. However, its utilization is largely hindered by poor cyclability and mechanical rigidity due to the lack of a flexible and durable catalyst electrode. Herein, flexible fiber‐shaped Li–CO2 batteries with ultralong cycle‐life, high rate capability, and large specific capacity are fabricated, employing bamboo‐like N‐doped carbon nanotube fiber (B‐NCNT) as flexible, durable metal‐free catalysts for both CO2 reduction and evolution reactions. Benefiting from high N‐doping with abundant pyridinic groups, rich defects, and active sites of the periodic bamboo‐like nodes, the fabricated Li–CO2 battery shows outstanding electrochemical performance with high full‐discharge capacity of 23 328 mAh g?1, high rate capability with a low potential gap up to 1.96 V at a current density of 1000 mA g?1, stability over 360 cycles, and good flexibility. Meanwhile, the bifunctional B‐NCNT is used as the counter electrode for a fiber‐shaped dye‐sensitized solar cell to fabricate a self‐powered fiber‐shaped Li–CO2 battery with overall photochemical–electric energy conversion efficiency of up to 4.6%. Along with a stable voltage output, this design demonstrates great adaptability and application potentiality in wearable electronics with a breath monitor as an example.  相似文献   

4.
The rapid development of wearable electronics requires a revolution of power accessories regarding flexibility and energy density. The Li–CO2 battery was recently proposed as a novel and promising candidate for next‐generation energy‐storage systems. However, the current Li–CO2 batteries usually suffer from the difficulties of poor stability, low energy efficiency, and leakage of liquid electrolyte, and few flexible Li–CO2 batteries for wearable electronics have been reported so far. Herein, a quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery with low overpotential and high energy efficiency, by employing ultrafine Mo2C nanoparticles anchored on a carbon nanotube (CNT) cloth freestanding hybrid film as the cathode, is demonstrated. Due to the synergistic effects of the CNT substrate and Mo2C catalyst, it achieves a low charge potential below 3.4 V, a high energy efficiency of ≈80%, and can be reversibly discharged and charged for 40 cycles. Experimental results and theoretical simulation show that the intermediate discharge product Li2C2O4 stabilized by Mo2C via coordinative electrons transfer should be responsible for the reduction of overpotential. The as‐fabricated quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery can also keep working normally even under various deformation conditions, giving it great potential of becoming an advanced energy accessory for wearable electronics.  相似文献   

5.
High‐rate performance flexible lithium‐ion batteries are desirable for the realization of wearable electronics. The flexibility of the electrode in the battery is a key requirement for this technology. In the present work, spinel lithium titanate (Li4Ti5O12, LTO) cuboid arrays are grown on flexible carbon fiber cloth (CFC) to fabricate a binder‐free composite electrode (LTO@CFC) for flexible lithium‐ion batteries. Experimental results show that the LTO@CFC electrode exhibits a remarkably high‐rate performance with a capacity of 105.8 mAh g?1 at 50C and an excellent electrochemical stability against cycling (only 2.2% capacity loss after 1000 cycles at 10C). A flexible full cell fabricated with the LTO@CFC as the anode and LiNi0.5Mn1.5O4 coated on Al foil as the cathode displays a reversible capacity of 109.1 mAh g?1 at 10C, an excellent stability against cycling and a great mechanical stability against bending. The observed high‐rate performance of the LTO@CFC electrode is due to its unique corn‐like architecture with LTO cuboid arrays (corn kernels) grown on CFC (corn cob). This work presents a new approach to preparing LTO‐based composite electrodes with an architecture favorable for ion and electron transport for flexible energy storage devices.  相似文献   

6.
Rechargeable aprotic lithium (Li)–O2 batteries with high theoretical energy densities are regarded as promising next‐generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round‐trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li–O2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high‐performance cathode catalysts for stable Li–O2 batteries. Perspectives on enhancing the overall electrochemical performance of Li–O2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high‐performance lithium–O2 batteries.  相似文献   

7.
Lithium–sulfur (Li–S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the “shuttle effect” of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li–S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal–organic framework (MOF)‐derived N‐doped carbon nanoarrays with embedded CoP (CC@CoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm–2) and exhibit large specific capacities at different C‐rates. Specially, an outstanding long‐term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high‐energy‐density Li–S batteries.  相似文献   

8.
Gel‐polymer electrolytes are considered as a promising candidate for replacing the liquid electrolytes to address the safety concerns in Li–O2/air batteries. In this work, by taking advantage of the hydrogen bond between thermoplastic polyurethane and aerogel SiO2 in gel polymer, a highly crosslinked quasi‐solid electrolyte (FST‐GPE) with multifeatures of high ionic conductivity, high mechanical flexibility, favorable flame resistance, and excellent Li dendrite impermeability is developed. The resulting gel‐polymer Li–O2/air batteries possess high reaction kinetics and stabilities due to the unique electrode–electrolyte interface and fast O2 diffusion in cathode, which can achieve up to 250 discharge–charge cycles (over 1000 h) in oxygen gas. Under ambient air atmosphere, excellent performances are observed for coin‐type cells over 20 days and for prototype cells working under extreme bending conditions. Moreover, the FST‐GPE electrolyte also exhibits durability to protect against fire, dendritic Li, and H2O attack, demonstrating great potential for the design of practical Li–O2/air batteries.  相似文献   

9.
The aprotic Li–O2 battery has attracted a great deal of interest because theoretically it can store more energy than today's Li‐ion batteries. However, current Li–O2 batteries suffer from passivation/clogging of the cathode by discharged Li2O2, high charging voltage for its subsequent oxidation, and accumulation of side reaction products (particularly Li2CO3 and LiOH) upon cycling. Here, an advanced Li–O2 battery with a hexamethylphosphoramide (HMPA) electrolyte is reported that can dissolve Li2O2, Li2CO3, and LiOH up to 0.35, 0.36, and 1.11 × 10?3m , respectively, and a LiPON‐protected lithium anode that can be reversibly cycled in the HMPA electrolyte. Compared to the benchmark of ether‐based Li–O2 batteries, improved capacity, rate capability, voltaic efficiency, and cycle life are achieved for the HMPA‐based Li–O2 cells. More importantly, a combination of advanced research techniques provide compelling evidence that operation of the HMPA‐based Li–O2 battery is backed by nearly reversible formation/decomposition of Li2O2 with negligible side reactions.  相似文献   

10.
In response to the call for safer high‐energy‐density storage systems, high‐voltage solid‐state Li metal batteries have attracted extensive attention. Therefore, solid electrolytes are required to be stable against both Li anode and high‐voltage cathodes; nevertheless, the requirements still cannot be completely satisfied. Herein, a heterogeneous multilayered solid electrolyte (HMSE) is proposed to broaden electrochemical window of solid electrolytes to 0–5 V, through different electrode/electrolyte interfaces to overcome the interfacial instability problems. Oxidation‐resistance poly(acrylonitrile) (PAN) is in contact with the cathode, while reduction tolerant polyethylene glycol diacrylate contacts with Li metal anode. A Janus and flexible PAN@Li1.4Al0.4Ge1.6(PO4)3 (80 wt%) composite electrolyte is designed as intermediate layer to inhibit dendrite penetration and ensure compact interface. Paired with LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2 cathodes, which are rarely used in solid‐state batteries, the solid‐state Li metal batteries with HMSE exhibit excellent electrochemical performance including high capacity and long cycle life. Besides, the Li||Li symmetric batteries maintain a stable polarization less than 40 mV for more than 1000 h under 2 mA cm?2 and effective inhibition of dendrite formation. This study offers a promising approach to extend the applications of solid electrolytes for high‐voltage solid‐state Li metal batteries.  相似文献   

11.
The Li–air battery represents a promising power candidate for future electronics due to its extremely high energy density. However, the use of Li–air batteries is largely limited by their poor cyclability in ambient air. Herein, Li–air batteries with ultralong 610 cycles in ambient air are created by combination of low‐density polyethylene film that prevents water erosion and gel electrolyte that contains a redox mediator of LiI. The low‐density polyethylene film can restrain the side reactions of the discharge product of Li2O2 to Li2CO3 in ambient air, while the LiI can facilitate the electrochemical decomposition of Li2O2 during charging, which improves the reversibility of the Li–air battery. All the components of the Li–air battery are flexible, which is particularly desirable for portable and wearable electronic devices.  相似文献   

12.
Currently, the main bottleneck for the widespread application of Ni–Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni‐based cathode and dendrite formation of the Zn anode during the charging–discharging processes. Herein, a highly rechargeable, flexible, fiber‐shaped Ni–Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni–NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni–NiO heterojunction nanosheet cathode, the as‐fabricated fiber‐shaped Ni–NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni–NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g?1) electrolytes. Moreover, a peak energy density of 6.6 µWh cm?2, together with a remarkable power density of 20.2 mW cm?2, is achieved by the flexible quasi‐solid‐state fiber‐shaped Ni–NiO//Zn battery, outperforming most reported fiber‐shaped energy‐storage devices. Such a novel concept of a fiber‐shaped Ni–Zn battery with impressive stability will greatly enrich the flexible energy‐storage technologies for future portable/wearable electronic applications.  相似文献   

13.
The Li–O2 battery (LOB) is considered as a promising next‐generation energy storage device because of its high theoretic specific energy. To make a practical rechargeable LOB, it is necessary to ensure the stability of the Li anode in an oxygen atmosphere, which is extremely challenging. In this work, an effective Li‐anode protection strategy is reported by using boric acid (BA) as a solid electrolyte interface (SEI) forming additive. With the assistance of BA, a continuous and compact SEI film is formed on the Li‐metal surface in an oxygen atmosphere, which can significantly reduce unwanted side reactions and suppress the growth of Li dendrites. Such an SEI film mainly consists of nanocrystalline lithium borates connected with amorphous borates, carbonates, fluorides, and some organic compounds. It is ionically conductive and mechanically stronger than conventional SEI layer in common Li‐metal‐based batteries. With these benefits, the cycle life of LOB is elongated more than sixfold.  相似文献   

14.
Owing to the high theoretical specific capacity (1675 mA h g?1) and low cost, lithium–sulfur (Li–S) batteries offer advantages for next‐generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li–S batteries. To address such issues, well‐designed yolk–shelled carbon@Fe3O4 (YSC@Fe3O4) nanoboxes as highly efficient sulfur hosts for Li–S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe3O4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe3O4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe3O4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm?2) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal‐oxide‐based yolk–shelled framework as a high sulfur‐loading host for advanced Li–S batteries with superior electrochemical properties.  相似文献   

15.
Lithium metal is an ultimate anode in “next‐generation” rechargeable batteries, such as Li–sulfur batteries and Li–air (Li–O2) batteries. However, uncontrollable dendritic Li growth and water attack have prevented its practical applications, especially for open‐system Li–O2 batteries. Here, it is reported that the issues can be addressed via the facile process of immersing the Li metal in organic GeCl4–THF steam for several minutes before battery assembly. This creates a 1.5 µm thick protection layer composed of Ge, GeOx, Li2CO3, LiOH, LiCl, and Li2O on Li surface that allows stable cycling of Li electrodes both in Li‐symmetrical cells and Li–O2 cells, especially in “moist” electrolytes (with 1000–10 000 ppm H2O) and humid O2 atmosphere (relative humidity (RH) of 45%). This work illustrates a simple and effective way for the unfettered development of Li‐metal‐based batteries.  相似文献   

16.
Li–CO2 batteries represent an attractive solution for electrochemical energy storage by utilizing atmospheric CO2 as the energy carrier. However, their practical viability critically depends on the development of efficient and low‐cost cathode catalysts for the reversible formation and decomposition of Li2CO3. Here, the great potential of a structurally engineered polymer is demonstrated as the cathode catalyst for rechargeable Li–CO2 batteries. Conjugated cobalt polyphthalocyanine is prepared via a facile microwave heating method. Due to the crosslinked network, it is intrinsically elastic and has improved chemical, physical, and mechanical stability. Electrochemical measurements show that cobalt polyphthalocyanine facilitates the reversible formation and decomposition of Li2CO3, and therefore enables high‐performance Li–CO2 batteries with large areal capacity and impressive cycling performance. In addition, the elastic and reprocessable property of the polymeric catalyst renders it possible to fabricate flexible batteries.  相似文献   

17.
Lithium–oxygen (Li–O2) batteries are attracting more attention owing to their superior theoretical energy density compared to conventional Li‐ion battery systems. With regards to the catalytically electrochemical reaction on a cathode, the electrocatalyst plays a key role in determining the performance of Li–O2 batteries. Herein, a new 3D hollow α‐MnO2 framework (3D α‐MnO2) with porous wall assembled by hierarchical α‐MnO2 nanowires is prepared by a template‐induced hydrothermal reaction and subsequent annealing treatment. Such a distinctive structure provides some essential properties for Li–O2 batteries including the intrinsic high catalytic activity of α‐MnO2, more catalytic active sites of hierarchical α‐MnO2 nanowires on 3D framework, continuous hollow network and rich porosity for the storage of discharge product aggregations, and oxygen diffusion. As a consequence, 3D α‐MnO2 achieves a high specific capacity of 8583 mA h g?1 at a current density of 100 mA g?1, a superior rate capacity of 6311 mA h g?1 at 300 mA g?1, and a very good cycling stability of 170 cycles at a current density of 200 mA g?1 with a fixed capacity of 1000 mA h g?1. Importantly, the presented design strategy of 3D hollow framework in this work could be extended to other catalytic cathode design for Li–O2 batteries.  相似文献   

18.
Sulfur cathodes have become appealing for rechargeable batteries because of their high theoretical capacity (1675 mA h g?1). However, the conventional cathode configuration borrowed from lithium‐ion batteries may not allow the pure sulfur cathode to put its unique materials chemistry to good use. The solid(sulfur)–liquid(polysulfides)–solid(sulfides) phase transitions generate polysulfide intermediates that are soluble in the commonly used organic solvents in Li–S cells. The resulting severe polysulfide diffusion and the irreversible active‐material loss have been hampering the development of Li–S batteries for years. The present study presents a robust, ultra‐tough, flexible cathode with the active‐material fillings encapsulated between two buckypapers (B), designated as buckypaper/sulfur/buckypaper (B/S/B) cathodes, that suppresses the irreversible polysulfide diffusion to the anode and offers excellent electrochemical reversibility with a low capacity fade rate of 0.06% per cycle after 400 cycles. Engineering enhancements demonstrate that the B/S/B cathodes represent a facile approach for the development of high‐performance sulfur electrodes with a high areal capacity of 5.1 mA h cm?2, which increases further to approach 7 mA h cm?2 on coupling with carbon‐coated separators.  相似文献   

19.
The recharge ability of zinc metal‐based aqueous batteries is greatly limited by the zinc anode. The poor cycling durability of Zn anodes is attributed to the dendrite growth, shape change and passivation, but this issue has been ignored by using an excessive amount of Zn in the past. Herein, a 3D nanoporous (3D NP) Zn–Cu alloy is fabricated by a sample electrochemical‐assisted annealing thermal method combined, which can be used directly as self‐supported electrodes applied for renewable zinc‐ion devices. The 3D NP architectures electrode offers high electron and ion transport paths and increased material loading per unit substrate area, which can uniformly deposit/strip Zn and improve charge storage ability. Benefiting from the intrinsic materials and architectures features, the 3D NP Zn–Cu alloy anode exhibits high areal capacity and excellent cycling stability. Further, the fabricated high‐voltage double electrolyte aqueous Zn–Br2 battery can deliver maximum areal specific capacity of ≈1.56 mAh cm?2, which is close to the level of typical commercial Li‐ion batteries. The excellent performance makes it an ideal candidate for next‐generation aqueous zinc‐ion batteries.  相似文献   

20.
Lithium metal has attracted much research interest as a possible anode material for high‐energy‐density lithium‐ion batteries in recent years. However, its practical use is severely limited by uncontrollable deposition, volume expansion, and dendrite formation. Here, a metastable state of Li, Li cluster, that forms between LiC6 and Li dendrites when over‐lithiating carbon cloth (CC) is discovered. The Li clusters with sizes in the micrometer and submicrometer scale own outstanding electrochemical reversibility between Li+ and Li, allowing the CC/Li clusters composite anode to demonstrate a high first‐cycle coulombic efficiency (CE) of 94.5% ± 1.0% and a stable CE of 99.9% for 160 cycles, which is exceptional for a carbon/lithium composite anode. The CC/Li clusters composite anode shows a high capacity of 3 mAh cm?2 contributed by both Li+ intercalation and Li‐cluster formation, and excellent cycling stability with a signature sloping voltage profile. Furthermore, the CC/Li clusters composite anode can be assembled into full cells without precycling or prelithiation. The full cells containing bare CC as the anode and excessive LiCoO2 as the cathode exhibit high specific capacity and good cyclic stability in 200 cycles, stressing the advantage of controlled formation of Li clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号