首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
将极限学习机(ELM)应用于铁谱磨粒模式识别中,从磨粒彩色图像中提取出磨粒的形状尺寸、颜色、纹理3个方面的特征参数作为ELM的输入,以正常滑动磨粒、严重滑动磨粒、球状磨粒、切削磨粒、氧化物磨粒这5种类型磨粒作为ELM的输出,建立基于ELM的磨粒分类器;将3个方面的17个特征参数进行排列组合建立不同的模型,通过对比实验及分析,确定出最优的模型和磨粒分类器;通过实验比较基于ELM与基于BP神经网络的磨粒分类器性能。结果表明:基于ELM神经网络的磨粒分类器的识别速度平均为150 ms,准确率最高为96%,基于BP神经网络的磨粒分类器的识别速度平均为250 ms,准确率最高为90%。因此,基于ELM的磨粒分类器识别速度更快、准确率更高。  相似文献   

2.
在发动机油液在线监测系统中,运用支持向量机的方法对油液中的磨粒进行分类识别,并结合运用最近邻法对分类器的训练过程进行优化;其中基于支持向量机的磨粒分类器的输入为磨粒的主轴长度、孔隙率、圆度、角二阶矩、梯度熵和纹理相关性等参数,输出为滑动磨粒、切削磨粒、球状磨粒和疲劳剥块4种磨粒种类;搭建油液在线监测实验平台进行磨粒分类识别实验,结果表明,基于支持向量机的磨粒分类器的分类准确率高达94.7%,并且由于最近邻法的使用分类器的处理速度也提高了30%.  相似文献   

3.
刘国光 《润滑与密封》2005,(3):94-96,98
提出了一个基于改进支持向量机的磨粒模式识别系统。该系统首先对磨粒的铁谱分析图像进行预处理,然后提取其特征参数,最后利用支持向量机对磨粒所属的类型进行分类。  相似文献   

4.
基于支持向量机的磨粒铁谱识别系统   总被引:1,自引:0,他引:1  
提出了一个基于支持向量机的磨粒模式识别系统。该系统先对磨粒的铁谱分析图像进行预处理,然后提取特征参数,最后利用支持向量机对磨粒所属的类型进行分类。  相似文献   

5.
介绍了铁谱分析技术对设备状态监测与故障诊断的方法;通过机械润滑油或液压油中微观磨损颗粒的分析来判断机器当前的工作状态.铁谱的计算机图像分析技术是近年来研究的热点.基于BP神经网络对磨损磨粒进行识别,提出了磨粒的分步识别策略,并以磨粒样本对网络进行训练,取得了较好的识别效果.  相似文献   

6.
提出基于模糊支持向量机的机械设备在用油液磨粒自动识别方法。首先利用K-均值聚类算法对磨粒图像进行分割,提取磨粒的形状尺寸特征参数、边缘细节特征参数、表面纹理特征参数作为其量化表征,分别选择最能反映待识别磨粒特征的参数作为各个二分类器的输入向量;然后结合二叉树法和一对多法间接构造磨粒的分层多类别分类器模型,在训练过程中同时利用粒子群算法优化分类器的参数,建立一种参数自适应的模糊支持向量机分层多类别分类模型。将该模型应用到旋挖钻机在用油液的磨损颗粒识别中,识别率最高达90%。该模型结构简单、分类精度好,在磨粒识别领域较大的工程应用价值。  相似文献   

7.
基于支持向量机和神经网络对分类问题的比较研究   总被引:1,自引:0,他引:1  
支持向量机(SVM)和神经网络(ANN)是模式识别的两种方法,支持向量机是新兴的一种效率更高的识别方法,能够达到比神经网络更好的分类效果。文中以二分类为例比较了二者的分类准确率和效率问题。  相似文献   

8.
为提高磨粒智能识别的准确率,以传统支持向量机和粒子群优化(PSO)算法为基础,提出一种基于改进PSO算法的支持向量机(SVM)识别模型。该识别模型的惩罚参数和核函数参数可同时得到最佳优化,从而可建立模型参数最优的自适应SVM识别模型。采用该识别模型对油液中的磨粒进行智能识别,结果表明该模型识别准确率高达98%,明显优于BP神经网络模型。  相似文献   

9.
在磨粒识别过程中,铁谱磨粒图像预处理和特征参数提取是关键。应用图像形态学的处理方法对磨粒图像进行预处理,结果表明,利用开运算、闭运算的图像形态学处理方法对铁谱磨粒图像进行预处理,可以消除图像二值化后留下的孤立小碎点、孔洞以及边界断点。通过磨粒图像的统计特征参数和傅里叶特征参数建立BP神经网络,并对磨粒进行识别,结果表明:采用该方法能正确识别磨粒图像,辨别磨损机制。  相似文献   

10.
基于支持向量机的特征提取与分类   总被引:1,自引:0,他引:1  
  相似文献   

11.
为了提高仓库管理系统的性能,将支持向量机用于产品编号的模式识别。采用基于投影法的图像处理算法提取编号数字;对倾斜的数字进行矫正,并对提取的数字进行归一化;构造支持向量机分类器对归一化的数字进行识别;通过对一组数字样本的测试,分析了支持向量机参数与分类器的识别率的关系。测试结果表明,支持向量机分类器可以在小样本的情况下获得较高的识别率。  相似文献   

12.
改进的BP算法在磨粒识别中的应用   总被引:4,自引:2,他引:4  
提出了用隐层和输出层的权值单独修改的方法来改进神经网络算法,建立了适于磨粒的分析模型,设计了智能磨粒识别分类器。实例表明,用该方法可以准确识别磨粒类型,并具有较好的推广能力。  相似文献   

13.
提高铁谱磨粒识别能力是加强铁谱分析技术的重要手段,神经网络技术的不断普及为铁谱磨粒识别能力的提高带来了新的思路。对神经网络系统的基本原理和BP学习算法进行了叙述,并探讨了基于BP算法的磨粒特征识别系统的设计。  相似文献   

14.
介绍了最小二乘支持向量机(LS-SVM)回归算法的基本原理,并以490BPG型柴油机润滑油中磨损磨粒为研究对象,使用LS-SVM对磨粒的浓度数据进行了回归拟合并预测,并与基于人工神经网络的预测模型的预测结果进行了比较.结果表明,LS-SVM的预测模型的精确度较高,泛化能力强,是用于润滑油中磨粒浓度预测的一种有效的方法.  相似文献   

15.
介绍了铁谱分析技术对设备状态监测与故障诊断的方法;通过机械润滑油或液压油中微观磨损颗粒的分析来判断机器当前的工作状态。铁谱的计算机图像分析技术是近年来研究的热点。基于BP神经网络对磨损磨粒进行识别,提出了磨粒的分步识别策略,并以磨粒样本都对网络进行训练,取得了较好的识别效果。  相似文献   

16.
基于遗传算法的支持向量机分类器模型参数优化   总被引:13,自引:0,他引:13  
建立在统计学习理论和结构风险最小原则上的支持向量机在理论上保证了模型的最大泛化能力,因此与建立在经验风险最小原则上的神经网络模型相比,理论上更为完善。本文运用支持向量机建立模式识别分类器模型,研究影响模型分类能力的相关参数,在分析参数对分类器识别精度的影响基础上,提出用遗传算法建立支持向量机分类器模型的参数自适应优化算法。最后,用算例表明了本文算法的正确有效性。  相似文献   

17.
基于云理论与LS-SVM的刀具磨损识别方法   总被引:1,自引:0,他引:1  
针对刀具磨损过程中产生声发射信号的不确定性以及神经网络学习算法收敛速度慢、易陷入局部极小值、对特征要求较高等问题,提出了基于云理论和最小二乘支持向量机的刀具磨损状态识别方法。首先,对声发射信号进行小波包分解与重构,滤除干扰频段对求取特征参数的影响;其次,对重构后的信号利用逆向云算法提取云特征参数:期望、熵、超熵,分析刀具磨损声发射信号的云特性及磨损状态与云特征参数之间的关系;最后,将云特征参数组成特征向量送入最小二乘支持向量机进行识别。研究结果表明:所提取的特征可以很好地反映刀具的磨损状态,云-支持向量机方法可以有效地实现刀具磨损状态的识别,与传统神经网络识别方法相比具有更高的识别率,识别率达到96.67%。  相似文献   

18.
结合光谱油液分析技术,运用支持向量机对某履带车辆综合传动装置磨损状态进行研究。建立了一种多输出最小二乘支持向量回归算法,并将其应用到综合传动装置的光谱油液分析数据的预测研究中。采用交叉验证方法,讨论了回归算法中参数的选取问题,并将磨损元素预测值与试验值进行了对比分析。结果表明,该方法在较短里程(4000km以内)具有较高的准确率,可以用于综合传动装置磨损状态的预测研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号