首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
G. Li   《Renewable Energy》2000,21(3-4)
This paper investigates the potential and the feasibility of offshore wind energy for Hong Kong. The 1998 wind data taken from an island were analysed. The wind resource yields an annual mean wind speed of 6.6 m/s and mean wind power density of 310 W/m2. With commercially available 1.65 MW wind turbines placed on the whole of Hong Kong’s territorial waters, the maximum electricity generating potential from offshore wind is estimated to be 25 TWh which is about 72% of the total 1998 annual electricity consumption. However, potential is significantly reduced if other usages of the sea such as shipping are considered. A hypothetical offshore wind farm of 1038 MW capacity is then sited on the East-side waters. The extreme wind and wave climates, as well as the seasonal variation of wind power and demand are examined. The electricity generation costs are estimated and compared with the local retail tariff. Initial results indicate the wind farm is economically viable and technically feasible.  相似文献   

2.
H. X. Yang  L. Lu  J. Burnett 《Renewable Energy》2003,28(11):1813-1824
This paper describes a simulation model for analyzing the probability of power supply failure in hybrid photovoltaic–wind power generation systems incorporating a storage battery bank, and also analyzes the reliability of the systems. An analysis of the complementary characteristics of solar irradiance and wind power for Hong Kong is presented. The analysis of local weather data patterns shows that solar power and wind power can compensate well for one another, and can provide a good utilization factor for renewable energy applications. For the loss of power supply probability (LPSP) analysis, the calculation objective functions and restraints are set up for the design of hybrid systems and to assess their reliability. To demonstrate the use of the model and LPSP functions, a case study of hybrid solar–wind power supply for a telecommunication system is presented. For a hybrid system on the islands surrounding Hong Kong, a battery bank with an energy storage capacity of 3 days is suitable for ensuring the desired LPSP of 1%, and a LPSP of 0% can be achieved with a battery bank of 5 days storage capacity.  相似文献   

3.
This paper proposes a novel simulation method of wind power generation system (WPGS) using PSCAD/EMTDC. The pitch control-based rotation speed control scheme of turbine under variable wind speed is implemented. For the purpose of achieving effective and user-friendly simulation method for utility interactive (grid connected) WPGS, real weather condition-based WPGS simulation (RW–WPGS) is performed using PSCAD/EMTDC. It is not easy, in general, to consider the RW conditions in the WPGS simulation using the EMTP or PSPICE type of simulators. External parameters of the RW conditions, however, are necessary to improve the simulation accuracy.The components modeling of wind turbine system is also studied and the real weather conditions are introduced by the interface method of a non-linear external parameter of the PSCAD/EMTDC. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme.  相似文献   

4.
A technical and economic assessment has been made of the generation of electricity using wind turbines at one of the most promising wind sites in Egypt: Hurghada. In this paper, we used wind data recorded over 23 years for this site. The WASP program was used to calculate the values of wind speed frequency for the station, their seasonally values have been estimated and compared with measured data.Weibull parameters and the power law coefficient (n) for all seasons at different heights (10–70 m) has been estimated and used to describe the distribution and behavior of seasonal wind speed and their frequencies at Hurghada. The monthly and annual values of wind potential at a height of 70 m were obtained by extrapolation of the 10 m data from the results of our previous article [Ahmed Shata AS, Hanitsch R. The potential of electricity generation on the east coast of Red Sea in Egypt. Renew Energy 2006;31:1597–615] using the power law.Also, the monthly plant load factor (PLF) has been estimated, which is used to determine the expected annual energy output of a wind energy conversion system (WECS).Variation of annual capacity factor with rated wind speed for 10 different wind turbines has been studied. The lower the rated speed for the WECS of the same height, the higher will be the capacity factor values. The expected electrical energy cost of kWh produced by the wind turbine (Repower MM82) with a capacity of 2 MW considered for Hurghada station was found to be less than 1.5 € cent/kWh.  相似文献   

5.
Wind characteristics and wind turbine characteristics in Taiwan have been thoughtfully analyzed based on a long-term measured data source (1961–1999) of hourly mean wind speed at 25 meteorological stations across Taiwan. A two-stage procedure for estimating wind resource is proposed. The yearly wind speed distribution and wind power density for the entire Taiwan is firstly evaluated to provide annually spatial mean information of wind energy potential. A mathematical formulation using a two-parameter Weibull wind speed distribution is further established to estimate the wind energy generated by an ideal turbine and the monthly actual wind energy generated by a wind turbine operated at cubic relation of power between cut-in and rated wind speed and constant power between rated and cut-out wind speed. Three types of wind turbine characteristics (the availability factor, the capacity factor and the wind turbine efficiency) are emphasized. The monthly wind characteristics and monthly wind turbine characteristics for four meteorological stations with high winds are investigated and compared with each other as well. The results show the general availability of wind energy potential across Taiwan.  相似文献   

6.
This paper presents the first estimate of offshore wind power potential for the central coast of Chile. For this purpose, wind speed data from in-situ stations and ERA-Interim reanalysis were used to simulate wind fields at regional level by means of the Weather Research and Forecasting (WRF) model. Wind field simulations were performed at different heights (20, 30, 40 and 140 m.a.s.l.) and a spatial resolution of 3 × 3 km for the period from February 1, 2006 to January 31, 2007, which comprised the entire series of in-situ data available. The results show an RMSE and r2 of 2.2 m s−1 and 0.55 respectively for the three heights simulated as compared to in-situ data. Based on the simulated wind data, the wind power for the study area was estimated at ∼1000 W m−2 at a height of 140 m.a.s.l. For a typical wind turbine of 8 MW generator, the estimated capacity factor exceeds 40%, with an average annual generation of ∼30 GWh. Offshore wind power in Chile is an emerging renewable energy source that is as yet still under-developed, these estimates help to fill in some of the gaps in our knowledge about Chile's true renewable energy potential.  相似文献   

7.
Wind resource analysis was carried out for two major islands in the Fiji. Wind data from July 1993 to June 2005 from NASA data base was analysed. Annual seasonal variation in wind speed, direction and power density were analysed for various locations. The average yearly wind speed for Fiji is between 5 and 6 m/s with average power density of 160 W/m2. Site specific validation showed no significant relationship between NASA and experimental data. The wind resource at Laucala Bay has a power density of 131 W/m2 at 55 m. The expected annual energy produced from a 275 kW GEV Vergnet wind turbine is 344 MWh. The capacity factor of the turbine is expected to be 14.3% with an overall efficiency of 37%. The electricity generated would cost $FJ 0.27 per kWh. The system will payback its worth in 12.2 years.  相似文献   

8.
The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine.  相似文献   

9.
In this paper, the hourly measured wind speed data for years 2003–2005 at 10 m, 30 m and 60 m height for Kingdom of Bahrain have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 30 m and 60 m. Weibull distribution parameters have been estimated and compared annually and on monthly bases using two methods; the graphical method and the another method, designated in this paper as approximated method, which depends on the standard deviation and average wind speed. The maximum power density for 10 m, 30 m and 60 m heights were found to be 164.33 W/m2, 624.17 W/m2 and 1171.18 W/m2 in February, respectively while the minimum power density were 65.33 W/m2, 244.33 W/m2 and 454.53 W/m2 in October, respectively. The average annual wind power density was found to be 114.54 W/m2 for 10 m height, 433.29 W/m2 for 30 m height and 816.70 W/m2 for 60 m height. Weibull probability function, using Weibull parameters estimated from the approximated method, has shown to provide more accurate prediction of average wind speed and average power density than the graphical method. In addition, the site matching of wind turbine generators at 30 m and 60 m heights has been investigated by estimating the capacity factors of various commercially available wind turbines generators. The monthly and annual variation of capacity factors have been studied to ensure optimum selection of wind turbine generators.  相似文献   

10.
The capacity factor is an important wind turbine parameter which is ratio of average output electrical power to rated electrical power of the wind turbine. Another main factor, the AEP, the annual energy production, can be determined using wind characteristics and wind turbine performance. Lower rated power may lead to higher capacity factor but will reduce the AEP. Therefore, it is important to consider simultaneously both the capacity factor and the AEP in design or selecting a wind turbine. In this work, a new semi-empirical secondary capacity factor is introduced for determining a rated wind speed at which yearly energy and hydrogen production obtain a maximum value. This capacity factor is expressed as ratio of the AEP for wind turbine to yearly wind energy delivered by mean wind speed at the rotor swept area. The methodology is demonstrated using the empirical efficiency curve of Vestas-80 2 MW turbine and the Weibull probability density function. Simultaneous use of the primary and the secondary capacity factors are discussed for maximizing electrical energy and hence hydrogen production for different wind classes and economic feasibility are scrutinized in several wind stations in Kuwait.  相似文献   

11.
The paper provides an assessment of the current wind energy potential in Ukraine, and discusses developmental prospects for wind-hydrogen power generation in the country. Hydrogen utilization is a highly promising option for Ukraine's energy system, environment, and business. In Ukraine, an optimal way towards clean zero-carbon energy production is through the development of the wind-hydrogen sector. In order to make it possible, the energy potential of industrial hydrogen production and use has to be studied thoroughly.Ukraine possesses huge resources for wind energy supply. At the beginning of 2020, the total installed capacity of Ukrainian wind farms was 1.17 GW. Wind power generation in Ukraine has significant advantages in comparison to the use of traditional sources such as thermal and nuclear energy.In this work, an assessment of the wind resource potential in Ukraine is made via the geographical approach suggested by the authors, and according to the «Methodical guidelines for the assessment of average annual power generation by a wind turbine based on the long-term wind speed observation data». The paper analyses the long-term dynamics of average annual wind speed at 40 Ukrainian weather stations that provide valid data. The parameter for the vertical wind profile model is calculated based on the data reanalysis for 10 m and 50 m altitudes. The capacity factor (CF) for modern wind turbine generators is determined. The CF spatial distribution for an average 3 MW wind turbine and the power generation potential for the wind power plants across the territory of Ukraine are mapped.Based on the wind energy potential assessment, the equivalent possible production of water electrolysis-derived green hydrogen is estimated. The potential average annual production of green hydrogen across the territory of Ukraine is mapped.It is concluded that Ukraine can potentially establish wind power plants with a total capacity of 688 GW on its territory. The average annual electricity production of this system is supposed to reach up to 2174 bln kWh. Thus, it can provide an average annual production of 483 billion Nm3 (43 million tons) of green hydrogen by electrolysis. The social efficiency of investments in wind-hydrogen electricity is presented.  相似文献   

12.
Potential for wind generation on the Guyana coastlands   总被引:1,自引:0,他引:1  
Guyanas dependence upon imported petroleum fuels can only be offset by the sustained exploitation of its indigenous resources. With its populated coastlands exposed to the northeast trade winds and a history of small-scale wind energy utilisation wind is one such potential energy source. In this study, the coastal wind regime is analysed and historical data from a coastal weather station are used to estimate the potential for wind generation. It is found that a hybrid Weibull probability density function best describes the annual wind speed frequency distribution at the reference height of 10.67 m. With an annual mean wind speed of 5.8 ms, an energy pattern factor of 1.41, and an annual average power density of 159 Wm2, this distribution represents a class-3 wind resource, suitable for most wind turbine applications. Site analysis and observed trends in coastal wind availability suggest the strong likelihood of a greater wind resource in more open locations. In view of its apparent potential for wind farm operation, a comprehensive, wind resource assessment programme is recommended for the Guyana coastlands.  相似文献   

13.
This paper proposes the use of wind power as a source of electricity in a new city being developed in the Duqm area of Oman. Recent wind speed measurements taken at the Duqm metrological station are analyzed to obtain the annual and monthly wind probability distribution profiles represented by Weibull parameters. The monthly average mean wind speed ranges between 2.93 m/s in February and 9.76 m/s in July, with an annual average of 5.33 m/s.A techno-economic evaluation of a wind power project is presented to illustrate the project's viability. Given Duqm's wind profile and the power curve characteristics of a V90-1.8 turbine, an annual capacity factor of 0.36 is expected. For the base-case assumptions, the cost of electricity is about $0.05 and $0.08 per kWh for discount rates of 5% and 10%, respectively. These values are higher than that of the existing generation system, due to the subsidized prices of domestically available natural gas. However, given high international natural gas prices, the country's long-term LNG export obligations, and the expansion of natural gas-based industries, investments in wind power in Duqm can be justified. A feed-in tariff and capital cost allowance policies are recommended to facilitate investments in this sector.  相似文献   

14.
The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented.  相似文献   

15.
Wind power development in Minnesota largely has been focused in the “windy” southwestern part of the state. This research evaluates the additional power that potentially could be generated via low wind speed turbines, particularly for areas of the state where there has been comparatively little wind energy investment. Data consist of 3 years (2002–2004) of wind speed measurements at 70–75 m above ground level, at four sites representing the range of wind speed regimes (Classes 2–5) found in Minnesota. Power estimates use three configurations of the General Electric 1.5-MW series turbine that vary in rotor diameter and in cut-in, cut-out, and rated speeds. Results show that lower cut-in, cut-out, and rated speeds, and especially the larger rotor diameters, yield increases of 15–30% in wind power potential at these sites. Gains are largest at low wind speed (Class 2) sites and during the summer months at all four sites. Total annual wind power at each site shows some year-to-year variability, with peaks at some sites partially compensating for lulls at others. Such compensation does not occur equally in all years: when large-scale atmospheric circulation patterns are strong (e.g., 2002), the four sites show similar patterns of above- and below-average wind power, somewhat reducing the ability of geographic dispersion to mitigate the effects of wind speed variability.  相似文献   

16.
An analytical formula for the capacity credit of wind power   总被引:1,自引:0,他引:1  
The capacity credit of wind power expresses how much ‘conventional’ power can be avoided or replaced by wind power. From data available in the literature, we have designed an analytical formula for the capacity credit based on the penetration level of the wind power in the power system, the overall capacity factor or annual use of the wind turbines, the reliability of the conventional part of the power system and the spread of the wind turbines. The resulting analytical formula avoids the use of elaborate stochastic reliability evaluations in providing a quick estimate of the capacity credit.  相似文献   

17.
大型风电机组功率曲线的分析与修正   总被引:1,自引:0,他引:1  
讨论了风电机组不同情况下的功率曲线定义,分析了功率曲线绘制过程中的风速处理方法,可以适用于绘制风力发电机组静、动态功率曲线;讨论了影响机组功率曲线的各种因素,并给出了影响因子,使得根据功率曲线进行风场发电量的计算可以取得更可靠的结果。  相似文献   

18.
This work presents an assessment of the potential and economical feasibility of adopting off-shore/on-shore wind energy as a renewable source of energy in Qatar. An analysis is presented for the long term measured on-shore wind speed (1976–2000) at Doha International Airport. A similar analysis is presented for the measured off-shore wind speed at the Qatari Haloul Island. For the on-shore measurements, the average annual wind speed (at 20 m height) was found to be about 5.1 m/s. On the other hand, for the off-shore measurements at Haloul, the average annual wind speed was found to be about 6.0 m/s. This result indicates the suitability of utilizing small to medium-size wind turbine generators, efficiently. Such generators can be implemented for water pumping and to produce sufficient electricity to meet vital, limited needs of remote locations, such as isolated farms, which do not have access to the national electricity grid. An economical assessment is presented which takes into consideration the interest recovery factor, the lifetime of the wind energy conversion system (WECS), the investment rate and operation and maintenance costs. The results indicate that the cost of electricity generation from the wind in Qatar compares favorably to that from fossil fuel resources. The feasibility of utilizing off-shore wind turbine systems to meet the power requirements of the island of Haloul and possibly provide additional power for nearby on-shore areas is discussed.  相似文献   

19.
Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO2. To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power.  相似文献   

20.
The potential of on‐shore wind energy in Spain is assessed using a methodology based on a detailed characterization of the wind resource. To obtain such a characterization, high‐resolution simulations of the weather in Spain during 1 year are performed, and the wind statistics thus gathered are used to estimate the electricity‐generation potential. The study reports also the evolution with the installed power of the capacity factor, a parameter closely related to the cost of the generated energy, as well as the occupied land, which bears environmental and social acceptance implications. A parametric study is performed to assess the uncertainties in the study associated to the choice of the characteristic wind‐turbine farm used; and comparisons are provided with other similar studies. The study indicates that the overall technical potential is approximately 1100 TWh/y; and that about 70 GW of installed wind power could operate with capacity factors in excess of 24%, resulting in an annual electricity generation of approximately 190 TWh/y, or 60% of the electricity consumption in 2008. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号