首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal nerves regulate corneal epithelial integrity, proliferation, and wound healing. The mechanisms by which the nerves mediate their effects remain poorly understood; however, the release of biologically active neuropeptides has been hypothesized. The purpose of the current investigation was to determine the relative densities, distribution patterns, and origins of rat corneal nerves containing each of eight different neuropeptides, calcitonin gene-related peptide (CGRP), substance P (SP), galanin (GAL), neuropeptide Y (NPY), methionine-enkephalin (M-ENK), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), and cholecystokinin (CCK). In the first set of experiments, immunohistochemical demonstrations of the above neuropeptides were performed on free-floating corneal sections cut tangential to the corneal surface. The results showed that six of the peptides, CGRP, SP, GAL, NPY, M-ENK, and VIP were present in rat corneal nerves. The innervation patterns of corneal nerves containing each of these six peptides were then documented by mapping all fibers in serial sections from select corneal quadrants onto a series of line drawings by using a drawing tube. In the second set of experiments, the origins of the corneal peptidergic nerve fibers were determined by selective ocular denervations. Unilateral combined sensory and sympathetic ocular denervations or unilateral sympathetic ocular denervations were performed in adult rats by transecting the ophthalmomaxillary nerve and/or removing the superior cervical ganglion. After 5-7 days, each of the ipsilateral corneas was sectioned and processed immunohistochemically for the presence of one of the six peptides found in experiment one, and the fibers that survived the ocular denervations were plotted onto line drawings. Ocular denervations revealed that corneal peptidergic nerves have sensory (CGRP, SP, and GAL), sympathetic (NPY), and parasympathetic (GAL, NPY, M-ENK, and VIP) origins. The results of this investigation have shown that the peptidergic innervation of the rat cornea is more extensive and complex than previously reported. This is the first investigation to show the presence of GAL in the rat cornea, and the first to demonstrate the presence of NPY-, VIP-, and M-ENK-IR nerve fibers in the cornea of any species.  相似文献   

2.
An extensive network of nerve fibers immunoreactive for the neuronal growth associated protein GAP-43 (GAP-43-IR) is present within the anterior pituitary (AP) of the rat, and the density of these fibers has been reported to increase 4 days after adrenalectomy (ADX). In the present study, we employed confocal dual-label immunofluorescence microscopy to determine whether GAP-43-IR fibers are specifically associated with corticotrophs at various intervals after ADX. A dramatic increase in the density of GAP-43-IR was apparent 4 days after ADX, and this increase was sustained at 7 and 14 days post-ADX. The percentage of corticotrophs in apparent contact with GAP-43-IR axons was 87% at 4 days after ADX and 92% at 14 days. In addition, fewer than 15% of GAP-43-IR terminals were associated with cells other than corticotrophs in either group. This highly specific targeting of corticotrophs during a period in which these cells are undergoing both hypertrophy and hyperplasia indicates that axonal sprouting is occurring in response to ADX. While the less intense GAP-43-IR in the AP of intact rats precluded precise quantitative analysis, the majority of corticotrophs also appeared to be selectively innervated in these animals. The observations that GAP-43-IR axons selectively contact corticotrophs, and that both the specificity and thoroughness of innervation are maintained by targeted growth of GAP-43-IR axons following ADX, strongly suggest that these fibers are of functional significance.  相似文献   

3.
B-50/GAP-43, a neural growth-associated phosphoprotein, is thought to play a role in neuronal plasticity and nerve fiber formation since it is expressed at high levels in developing and regenerating neurons and in growth cones. Using a construct containing the coding sequence of B-50/GAP-43 under the control of regulatory elements of the olfactory marker protein (OMP) gene, transgenic mice were generated to study the effect of directed expression of B-50/GAP-43 in a class of neurons that does not normally express B-50/GAP-43, namely, mature OMP-positive olfactory neurons. Olfactory neurons have a limited lifespan and are replaced throughout adulthood by new neurons that migrate into the upper compartment of the epithelium following their formation from stem cells in the basal portion of this neuroepithelium. Thus, the primary olfactory pathway is exquisitely suited to examine a role of B-50/GAP-43 in neuronal migration, lifespan, and nerve fiber growth. We find that B-50/GAP-43 expression in adult olfactory neurons results in numerous primary olfactory axons with enlarged endings preferentially located at the rim of individual glomeruli. Furthermore, ectopic olfactory nerve fibers in between the juxtaglomerular neurons or in close approximation to blood vessels were frequently observed. This suggests that expression of B-50/GAP-43 in mature olfactory neurons alters their response to signals in the bulb. Other parameters examined, that is, migration and lifespan of olfactory neurons are normal in B-50/GAP-43 transgenic mice. These observations provide direct in vivo evidence for a role of B-50/GAP-43 in nerve fiber formation and in the determination of the morphology of axons.  相似文献   

4.
Expression of GAP-43, a neuronal specific growth associated phosphoprotein, has been highly correlated with the growth and remodeling of the nervous system during development and regeneration. As part of an effort to understand mechanisms of developmental plasticity in the somatosensory system, we determined how the expression of GAP-43 is affected by prenatal and early postnatal nerve cut and repair in macaque monkeys. We also observed normal developmental changes in the expression of GAP-43 during early postnatal life in macaque monkeys. The normal cuneate nucleus, as well as other nuclei of the ascending somatosensory pathways, had low levels of GAP-43 at birth that increased by 3 months and declined thereafter to reach adult levels between 8 and 15 months of age. Fiber tracts expressed low levels of GAP-43 at all postnatal ages, except the pyramidal tract which demonstrated high levels a birth that decreased over the first year. These observations suggest a gradual but differential synaptic maturation in lower brain stem nuclei as macaque monkeys mature. Greatly increased levels of GAP-43 were observed at the time of birth in the cuneate nucleus of two macaque monkeys with prenatal (E94 and El 14) nerve repair. Such an increase was not found after prenatal nerve repair with a postnatal survival time of 15 months, or after early postnatal nerve repair with short (80 days) or long (20 months) survivals. The results suggest that reorganization mechanisms at central terminals of peripheral nerves are very different following prenatal than postnatal nerve damage.  相似文献   

5.
Light- and electron-microscopic immunohistochemical techniques were used to investigate the distribution of the matricellular protein thrombospondin 1 in normal human, bovine and rabbit cornea. Light-microscopic immunoreactivity for thrombospondin 1 was observed in the epithelial basement membrane, posterior Descemet's membrane and endothelium of human and bovine cornea. The bulk of the stroma, the stromal cells (keratocytes) and the anterior part of Descemet's membrane in human and bovine cornea were devoid of detectable thrombospondin 1 and the protein could not be demonstrated in any of the layers of the rabbit cornea. Electron-microscopic immunogold studies of human and bovine cornea revealed that thrombospondin 1 labelling of corneal endothelial (and basal epithelial) cells included focal deposits at cell membranes. It is postulated that thrombospondin 1 regulates interactions between cells and their basement membrane, and perhaps cell-to-cell interactions, in the normal human and bovine corneal endothelium and basal epithelium.  相似文献   

6.
The purpose of this study was to compare the regeneration of corneal nerves after photorefractive keratectomy (PRK) versus laser in situ keratomileusis (LASIK) in vivo with a confocal videomicroscope. In all, 15 eyes that had undergone PRK and 15 eyes that had been subjected to LASIK were compared with a confocal in vivo slit-scanning video-microscope. The subepithelial nerves were observed preoperatively and at 3, 6, and 12 months postoperatively. In all eyes, good microscope images of the subepithelial nerve plexus could be obtained preoperatively. Because of postoperative light reflection and scattering in the treated area, subepithelial nerve-fiber regeneration could be followed satisfactorily only in seven eyes after PRK and in five eyes following LASIK. In the eyes treated with PRK, recovery of subepithelial reinnervation started from the margin of the ablation zone, being directed toward the center of the cornea. At 8 weeks postoperatively, rarefied subepithelial nerve fibers were visible at the edges, and after 3 months, single nonbranched nerve fibers could be visualized in the center of the ablation zone. At 6-8 months following PRK, subepithelial nerve regeneration seemed to be completed; however, abnormal branching and accessory thin nerve fibers were present without exception. After LASIK, corneal nerve-fiber regeneration followed the same course described for PRK except that regenerated subepithelial nerve fibers were barely visible in the center after 6 months. Further changes in nerve structure were visible for up to 12 months postoperatively. Recovery of corneal sensitivity in humans has been reported to start at 4-6 weeks after PRK and is said to be completed within 6-12 months of surgery. Slit-scanning videomicroscope findings were in accordance with these observations.  相似文献   

7.
Cholinesterase (ChE) activities of the rat cornea were demonstrated histochemically by using both light and electron microscopes. Acetylcholinesterase (AChE) reaction was localized in the axolemma of the nerves in the corneal stroma. The epithelial cell membranes and the intraepithelial nerve endings also showed AChE reaction. Non-specific cholinesterase (NsChE) activity was observed only in the endothelial cell membranes. Cervical sympathectomy, ciliary ganglionectomy and stereotactic coagulation of the ophthalmic division of the trigeminal nerve were performed in order to study the routes of the AChE-containing nerves to the cornea. The disappearance of AChE-containing nerves was observed only after ophthalmic neurotomy. It is suggested that the AChE-containing nerves are distributed to the rat cornea exclusively via the ophthalamic nerve. They seem to be sensory nerves.  相似文献   

8.
The innervation of normal, mature mammalian skin is widely thought to be constant. However, the extensive skin remodeling accompanying the transformation of hair follicles from resting stage through growth and regression back to resting (telogen-anagen-catagen-telogen) may also be associated with alteration of skin innervation. We, therefore, have investigated the innervation of the back skin of adolescent C57BL/6 mice at various stages of the depilation-induced hair cycle. By using antisera against neuronal (protein gene product 9.5 [PGP 9.5], neurofilament 150) and Schwann cell (S-100, myelin basic protein) markers, as well as against neural cell adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43), we found a dramatic increase of single fibers within the dermis and subcutis during early anagen. This was paralleled by an increase in the number of anastomoses between the cutaneous nerve plexuses and by distinct changes in the nerve fiber supply of anagen vs. telogen hair follicles. The follicular isthmus, including the bulge, the seat of epithelial follicle stem cells, was found to be the most densely innervated skin area. Here, a defined subpopulation of nerve fibers increased in number during anagen and declined during catagen, accompanied by dynamic alterations in the expression of NCAM and GAP-43. Thus, our study provides evidence for a surprising degree of plasticity of murine skin innervation. Because hair cycle-associated tissue remodeling evidently is associated with tightly regulated sprouting and regression of nerve fibers, hair cycle-dependent alterations in murine skin and hair follicle innervation offer an intriguing model for studying the controlled rearrangement of neuronal networks in peripheral tissues under physiological conditions.  相似文献   

9.
Peripheral nerve lesion results in changes in protein expression by neurons and denervated Schwann cells. In the present study we have addressed the question whether similar changes take place following functional denervation. Using immunohistochemistry and immunoelectron microscopy we examined changes in growth-associated protein (GAP-43) and low-affinity nerve growth factor receptor (p75NGFR) in rat gastrocnemius muscle following botulinum toxin-induced paralysis. GAP-43 and p75NGFR were selected because they are not expressed by mature intact motor neurons or Schwann cells, but are expressed following nerve lesion in both motor neurons and denervated Schwann cells. In control muscle, GAP-43 and p75NGFR immunoreactivity was seen only in nerve fibres near blood vessels. Two weeks after toxin injection, GAP-43 immunoreactivity could be seen at the motor endplates and in axons. Intensity of staining increased with longer survival and reached a peak between 4 and 8 weeks post-injection. Ultrastructurally, GAP-43 immunoreactivity was confined to nerve terminals and axons, whereas Schwann cells remained negative. Immunostaining for p75NGFR also increased following toxin injection and was detected in some terminal Schwann cells and in perineurial cells of small nerve fascicles near the paralyzed target cells, but not in axons. These results show that changes in expression of GAP-43 in motor neurons following functional denervation closely resemble the changes following anatomical interruption of nerve-muscle contact. GAP-43 was not expressed in Schwann cells, indicating that its upregulation in these cells is induced by loss of axonal contact or nerve degeneration products. There is no support for a role of p75NGFR in incorporation of neurotrophins in axons. The restriction of p75NGFR expression to terminal Schwann cells and perineurial cells in close proximity to the paralyzed target suggests a role for a target-derived signal or, alternatively, macrophages in eliciting this expression.  相似文献   

10.
The mammalian cornea receives a dense sensory innervation and a modest sympathetic innervation. The purpose of the current study was to determine if the rat cornea is also innervated by parasympathetic nerves. In the first set of experiments, unilateral combined sympathetic and sensory ocular denervations were performed in adult rats by surgical removal of the superior cervical ganglion and intracranial transection of the trigeminal ophthalmomaxillary nerve. Completeness of the denervation procedure was verified postmortem by a variety of macroscopic and immunohistochemical methods. Five to twelve days later, the corneas were serially sectioned tangential to the ocular surface and processed immunohistochemically with antibodies against the pan-neuronal markers, protein gene product 9.5 (PGP-9.5) and peripherin. In every animal a small, but constant, population of corneal and limbal immunoreactive fibers were unaffected by the surgical denervations and were concluded to derive from parasympathetic ganglia. In the second set of experiments, the origins of the rat corneal innervation were determined by applying the neuroanatomical tracer, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) to the central cornea. Two to four days later, the trigeminal, superior cervical, ciliary, accessory ciliary and pterygopalatine ganglia were sectioned and analysed for the presence of HRP-labeled neurons. Examination of the corneal application site and associated ocular tissues revealed no evidence of tracer spread into neighbouring structures. Small numbers (0-6 per animal) of HRP-labeled neurons were observed in the ipsilateral ciliary and accessory ciliary ganglia of most animals. The results of these carefully controlled studies provide strong anatomical evidence of a modest parasympathetic innervation of the rat cornea.  相似文献   

11.
Phosphorylation of GAP-43 (neuromodulin) by protein kinase C (PKC) occurs at a single site, serine41. In vivo, phosphorylation is induced after initiation of axonogenesis and is confined to distal axons and growth cones. Within individual growth cones, phosphorylation is nonuniformly distributed. Here, we have used high-resolution video-enhanced microscopy of cultured dorsal root ganglia neurons together with immunocytochemistry with a monoclonal antibody that recognizes PKC-phosphorylated GAP-43 to correlate the distribution of phosphorylated GAP-43 with growth cone behavior. In "quiescent," nontranslocating growth cones, phosphorylated GAP-43 was confined to the proximal neurite and the central organelle-rich region, and was low in organelle-poor lamellae. However, levels in lamellae were elevated when they became motile. Conversely, levels of phosphorylated GAP-43 were low in either lamellae that were actively retracting or in the central organelle-rich region and proximal neurite of growth cones that had totally collapsed. The results suggest a mechanism whereby phosphorylation of GAP-43 by PKC, potentially in response to extracellular signals, could direct the functional behavior of the growth cone.  相似文献   

12.
A possible role for nitric oxide in growth and regeneration of dorsal root ganglion (DRG) afferents has been explored in lesion experiments by comparing immunocytochemistry for nitric oxide synthase (NOS) with that for the growth-associated phosphoprotein 43 (GAP-43). Sciatic nerve ligature induced a progressive increase in the number of small DRG cell profiles immunopositive for NOS between 2 days and 4 weeks of survival. In the proximal stump of the ligature, NOS-immunopositive fibers began to appear 2 days after injury and their growth cones were especially evident after 7 days. NOS-immunopositive fibers appeared past (i.e., distal to) the ligature at 14 days of survival and extended for at least 6 mm in either direction 4 weeks after the lesion. Dorsal root ligature alone at L4-L5 did not result in expression of NOS in DRG neurons or in the appearance of NOS-immunopositive fibers. In rats with dorsal root ligature and nerve ligature, the results were similar to those with nerve ligature only. DRG cell profiles immunopositive for GAP-43 kept increasing from 2 days to 4 weeks after sciatic nerve ligature and included small neurons initially and large neurons subsequently. Numerous axons became GAP-43 immunopositive on both sides of the ligature from 2 days after injury. In double-labeled material, about 80% of DRG cell profiles immunopositive for NOS were also immunopositive for GAP-43. The two antigens co-occurred in peripheral nerve axons proximal to the ligature starting at about 7 days and distal to it at about 2 weeks after ligature. Thus, in response to nerve lesion, nitric oxide may not only provide an injury signal to the central nervous system but may also contribute to the growth and regeneration of injured axons.  相似文献   

13.
The aim of the study is to identify nitric oxide synthase (NOS) in the rabbit cornea and further investigate the physiological role of nitric oxide in the rabbit cornea. For histological identification, an immunohistochemical technique using anti-NOS monoclonal antibodies was employed. For the physiological study, we measured the corneal thickness in vivo as an indicator of corneal edema by ultrasonic pachymetry. The measurements were repeated before and after ipsilateral injections of N(G)-nitro-L-arginine methyl ester (L-NAME) or N(G)-nitro-D-arginine methyl ester (D-NAME) or 6-anilino-5,8-quinolinedione (LY-83583) with contralateral injection of vehicle (balanced salt solution) into the anterior chamber of the rabbit. We also monitored intraocular pressure (IOP) by pneumatonometry. Endothelial NOS (eNOS) immunoreactivity was demonstrated both in the corneal epithelium and the endothelium. The corneal thickness significantly increased after L-NAME or LY-83583 without significant rise of IOP, whereas no change was detected after vehicle or D-NAME. These results suggest that NO is spontaneously produced in the corneal endothelium and the NO/cyclic GMP pathway is involved in maintainance of corneal thickness.  相似文献   

14.
Most primary sensory neurones depend on neurotrophins for survival. Mutant mice in which TrkA, the high-affinity receptor for nerve growth factor (NGF), has been inactivated lack nociceptive neurones in sensory ganglia and do not respond to noxious stimuli. The cornea of the eye is innervated by trigeminal neurones that are activated by noxious mechanical, thermal and chemical stimuli. In the human cornea, these stimuli evoke only sensations of pain. We have analysed the innervation pattern and the response to noxious stimulation of the cornea of trkA (-/-) mutant mice. Corneal nerves were stained with the gold chloride impregnation method. Corneal sensitivity to noxious stimuli was assessed by counting blinking movements evoked by von Frey hairs, topical application of saline at different temperatures and application of acetic acid and capsaicin at different concentrations. In the cornea of trkA (-/-) mutant animals, we observed a drastic reduction in the number of nerve trunks and branches in the corneal stroma. Furthermore, quantitative analysis of the number of thin nerve terminals revealed a marked decrease in the corneal epithelium of trkA (-/-) mice when compared to those present in wild type and trkA (+/-) animals. The blinking response of trkA (-/-) mice to mechanical, thermal and chemical noxious stimuli was also significantly reduced. These results indicate that the population of corneal sensory neurones is markedly depleted in trkA (-/-) mutant mice. However, a small portion of corneal sensory neurones survive in these mice suggesting that they may be NGF independent. On the basis of our results, we propose that these surviving cells are polymodal nociceptive neurones, sensitive to mechanical stimulation, noxious heat and acid.  相似文献   

15.
Calmodulin and de-phosphorylated B-50/growth-associated protein-43 (GAP-43) have been shown to bind in vitro in a molecular complex, but evidence for an in situ association in the nervous system does not exist. Previously, we have reported that, in the model of the regenerating rat sciatic nerve, the B-50/GAP-43 immunoreactivity is increased and concentrated at the axolemma of unmyelinated axons located proximal to the site of injury and axon outgrowth. To explore a putative function of B-50/GAP-43, namely, the capacity of binding calmodulin to the plasma membrane, we examined the ultrastructural distribution of calmodulin in the proximal unmyelinated axon shafts of this model, using double immunolabelling and detection by fluorescent or gold probes conjugated to second antibodies. Immunofluorescence showed that seven days post-sciatic nerve crush the calmodulin immunoreactivity, similar to B-50/GAP-43 immunoreactivity, was intense in unmyelinated axon shafts located proximal to the site of injury of the regenerating nerve. Ultrastructurally, calmodulin was located at the axolemma of these regenerating unmyelinated axon shafts and inside the axoplasm, where it was associated with vesicles and microtubules. The plasma membrane labelling (approximately 69%) was significantly higher than the axoplasmic labelling. Over 60% of the plasma membrane-associated calmodulin co-localized with B-50/GAP-43 in a non-random distribution. Since normally calmodulin is largely present in the cytoplasm, these data suggest that calmodulin has been concentrated at the plasma membrane of unmyelinated axons, most probably by B-50/GAP-43. If the concentrating effect is due to B-50/GAP-43, then there is a possibility that these proteins may be present as a molecular complex in situ. The physiological significance could be that this association regulates the local availability of both B-50/GAP-43 and calmodulin for other interactions.  相似文献   

16.
Treatment with testosterone propionate (TP) after nerve injury is known to accelerate both the rate of axonal regeneration and functional recovery from facial paralysis in the adult male hamster. Peripheral nerve injury is also known to increase the expression of a 43 kilodalton growth-associated protein (GAP-43). In the intact brain, GAP-43 expression is affected by gonadal steroids. We thus postulated that steroidal modulation of GAP-43 gene expression may be a component of the neurotrophic action of TP in regenerating neurons. This issue was examined in hamster facial motor neurons (FMN) which contain androgen receptors and which have been shown to respond to exogenous steroids in a number of previous studies. Castrated adult male hamsters were subjected to right facial nerve transection and treated with either TP via subcutaneous hormone capsule implants, or left untreated (no hormone replacement). At post-injury/treatment times of 0.25, 2, 4, 7, and 14 d, the brain stem regions were harvested, cryostat sections were collected through the facial motor nucleus, and in situ hybridization was done using a 33P-labeled GAP-43 cDNA probe. Quantitative analysis of the autoradiograms by computer assisted grain counting revealed that axotomy produced a dramatic increase in GAP-43 mRNA levels in FMN by 2 d post-axotomy and that this increase remained through 14 d post-injury in both the TP-treated and the untreated group. In the nonhormone-treated group, there was a statistically significant dip in GAP-43 mRNA levels in FMN at 7 d post-operative, relative to 4 d post-operative levels. TP-treatment prevented this transient decline in GAP-43 mRNA levels in axotomized FMN.  相似文献   

17.
18.
Recent studies have revealed that proteins such as growth-associated protein 43 (GAP-43) and neuron-specific enolase (NSE), believed for many years to be expressed exclusively in neurons, are also present in glial cells under some circumstances. Here we present an overview of these observations. GAP-43 is expressed both in vitro and in vivo transiently in immature rat oligodendroglial cells of the central nervous system, in Schwann cell precursors, and in non-myelin-forming Schwann cells of the peripheral nervous system. GAP-43 mRNA is also present in oligodendroglial cells and Schwann cells, indicating that GAP-43 is synthesized in these cells. GAP-43 is also expressed in type 2 astrocytes (stellate-shaped astrocytes) and in some reactive astrocytes but not in type 1 astrocytes (flat protoplasmic astrocytes). These results suggest that GAP-43 plays a more general role in neural plasticity during development of the central and peripheral nervous systems. NSE enzymatic activity and protein and mRNA have been detected in rat cultured oligodendrocytes at levels comparable to those of cultured neurons. NSE expression increases during the differentiation of oligodendrocyte precursors into oligodendrocytes. In vivo, NSE protein is expressed in differentiating oligodendrocytes and is repressed in fully mature adult cells. The upregulation of NSE in differentiating oligodendrocytes coincides with the formation of large amounts of membrane structures and of protoplasmic processes. Similarly, NSE becomes detectable in glial neoplasms and reactive glial cells at the time when these cells undergo morphological changes. The expression of the glycolytic isozyme NSE in these cells, which do not normally contain it, could reflect a response to higher energy demands. This expression may also be related to the neurotrophic and neuroprotective properties demonstrated for this enolase isoform. NSE activity and protein and mRNA have also been found in cultured rat type 1-like astrocytes but at much lower levels than in neurons and oligodendrocytes. Thus GAP-43 and NSE should be used with caution as neuron-specific markers in studies of normal and pathological neural development.  相似文献   

19.
20.
The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4-6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4-6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4-6 segments connected with injured sciatic nerve, which promotes nerve regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号