共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
基于状态延迟动态递归神经网络的机器人动态自适应跟踪辨识 总被引:2,自引:0,他引:2
对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络(CIDRNN)作了改进,提出一种新的动态递归神经网络结构,称为状态延迟动态递归神经网络(State DelayInput Dynamical Recurrent Neural Network).具有这种新的拓扑结构和学习规则的动态递归网络,不仅明确了各权值矩阵的意义,而且使权值的训练过程更为简洁,意义更为明确.仿真实验表明,这种结构的网络由于增加了网络输入输出的前一步信息,提高了收敛速度,增强了实时控制的可能性.然后将该网络用于机器人未知非线性动力学的辨识中,使用辨识实际输出与机理模型输出之间的偏差,来识别机理模型或简化模型所丢失的信息,既利用了机器人现有的建模方法,又可以减小网络运算量,提高辨识速度.仿真结果表明了这种改进的有效性. 相似文献
4.
研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的Elman网络实现了非线性动态系统的辨识。仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的网络结构实现高阶系统的辨识,适用于具有本质非线性动态系统的辨识。 相似文献
5.
针对水轮发电机组的复杂动态特征,提出一种新的动态递归模糊神经网络结构,并将其应用于解决水轮发电机组的建模问题.通过在网络规则层引入乘积运算,使得复杂模糊规则容易提取,模糊推理功能易于实现.在网络隐层中引入局部递归单元,该方法能克服基于反向误差传播的静态网络辨识动态系统的局限性,提高辨识水轮发电机组动态特性的准确性.通过与其他智能方法的仿真比较,验证了所提出方法的有效性. 相似文献
6.
7.
8.
进化策略是一类适用于非线性、不可微和多峰值复杂函数的优化方法。提出了基于混合进化策略的非线性系统辨识方法。方法的基本思想是将非线性系统辨识问题转化为参数空间上的函数优化问题,然后应用一种新的混合进化策略对整个参数空间进行搜索以获得系统参数的最优估计。仿真结果显示了该方法的有效性。 相似文献
9.
基于ANN的动态系统状态方程辨识建模仿真 总被引:1,自引:0,他引:1
对系统辨识原理、基于神经网络(ANN)的动态系统辨识进行了分析,针对动态系统辨识模型描述的复杂性,为简化ANN辨识建模的输入/输出关系的表达,提高算法的简洁性,采用了状态方程辨识模型,并给出了基于ANN的动态系统状态方程辨识模型。为比较分析不同网络结构的辨识建模效果及网络模型泛化能力,针对三种不同网络结构方案进行了辨识建模仿真研究。仿真结果最示,基于ANN的动态系统状态方程模型的辨识建模是有效的,并且简单合理的网络结构方案,可提高网络辨识模型的泛化能力。 相似文献
10.
11.
针对研究对象定量研究复杂度高的地质工作,应用计算机进行定量化和信息化的研究,需要建立一定的数学模型,然而,传统的数学方法难以得到精确的数学模型,神经网络作为一非线性建模方法,具有良好的自组织和自适应性等功能,可以逼近任意的非线性函数(映射)。本文提出利用神经网络的自组织,自学习,自适应功能实现数学模型的实时建立的方法,并在反传神经算法前馈神经网络(BP)模型引入了自适应动量因子α,使得网络计算量小,收敛速度快,最后将该模型应用到某地岩性识别动态建模中,取得了较好的效果。 相似文献
12.
一种基于多进化神经网络的分类方法 总被引:9,自引:0,他引:9
分类问题是目前数据挖掘和机器学习领域的重要内容.提出了一种基于多进化神经网络的分类方法CABEN(classification approach based on evolutionary neural networks).利用改进的进化策略和Levenberg-Marquardt方法对多个三层前馈神经网络同时进行训练.训练好各个分类模型以后,将待识别数据分别输入,最后根据绝对多数投票法决定最终分类结果.实验结果表明,该方法可以较好地进行数据分类,而且与传统的神经网络方法以及贝叶斯方法和决策树方法相比,在 相似文献
13.
水下无人航行器(UUV)是具有较强非线性的复杂动态系统,而神经网络具有理论上逼近任意非线性的能力;为了提高UUV的动力学模型精度,运用了基于输出反馈的RBF-Elman(OFRBF-Elman)神经网络的系统辨识方法,即对Elman神经网络进行改进,将网络输出进行延时反馈,作为输入与隐层进行联接;将径向基函数作为隐层节点的激活函数,并以线性最小二乘法调整隐层到输出层的连接权值;然后,将该方法应用于UUV空间六自由度的动力学模型辨识中;最后,通过仿真证明了该网络结构的辨识算法具有很好的逼近能力和快速的训练速度。 相似文献
14.
15.
为了改善传感器的动态响应特性,对其输出结果进行动态补偿是一个有效方法;讨论了基于自适应神经网络的传感器动态逆建模方法,采用网络分块训练和可变学习因子的方法来提高训练的精度,缩短收敛时间;研究了在加入不同信噪比的随机噪声下应用该模型实现传感器动态补偿的可行性;对典型的压电传感器模型进行了仿真,仿真结果表明补偿后传感器模型的响应速度加快,同时还可以抑制噪声;研制了基于数字信号处理器的数据采集及补偿系统并运用该系统对传感器模拟器输出的数据进行了采集,试验结果表明该系统能够准确的采集存储数据,同时还能够修正由传感器模拟器引起的动态误差。 相似文献
16.
正交神经网络的动态建模方法研究 总被引:1,自引:0,他引:1
This paper presents a dynamic modeling method based on orthogonal neural network, it fully uses the characteristics of the nonlinear processing ability of neural networks and the efficient disposal of the large scaling sparse problems that Givens transform can process. It can not only train the notwork quickly, but also can optimize the structure of the networks. Simulating experiments show that the new modeling method is a simple universal modeling method for the nonlinear systems. 相似文献
17.
针对复杂非线性动态系统辨识问题,提出了一种基于过程神经元网络(PNN)的辨识模型和方法.根
据系统待辨识的模型结构和反映系统模态变化特征的动态样本数据,利用PNN 对时变输入/输出信号的非线性变
换机制和自适应学习能力,建立基于PNN 的系统辨识模型.辨识模型能够同时反映多输入时变信号的空间加权聚
合以及阶段时间效应累积结果,直接实现非线性系统输入/输出之间的动态映射关系.文中构建了用于并联结构和
串-并联结构辨识的PNN 模型,给出了相应的学习算法和实现机制,实验结果验证了模型和算法的有效性. 相似文献
18.
提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2-4-1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差及其一阶、二阶微分,因此具有增量型PID控制结构。应用该控制系统对一非线性时变系统进行仿真研究,仿真结果表明该控制方案不仅具有良好的跟踪特性,而且对系统参数变化具有较强的鲁棒性。 相似文献
19.
20.
为了有效提高神经网络的集成性能,提出了基于局部分类精度估计的动态自适应选择集成的思想.根据贝叶斯理论.证明了在满足一定假设的条件下,动态自适应选择集成的分类性能可以逼近最优贝叶斯分类器.在此基础上,分别介绍了硬决策和软决策两种个体网络选择方法.选自UCI机器学习数据库的5个数据集的实验结果表明,动态自适应选择的分类性能明显优于常用的投票法和平均法,且集成分类性能对邻域的大小并不敏感;其中,软决策方法要优于硬决策方法. 相似文献