首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对所提出的动态递归神经网络进行了分析,以及如何利用它们来进行系统辨识.设计了用于辨识柴油机的实验,最后在此基础上对柴油机的模型进行了辨识,取得了较好的效果.  相似文献   

2.
对所提出的动态递归神经网络进行了分析,以及如何利用它们来进行系统辨识。设计了用于辨识柴油机的实验,最后在此基础上对柴油机的模型进行了辨识,取得了较好的效果。  相似文献   

3.
对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络(CIDRNN)作了改进,提出一种新的动态递归神经网络结构,称为状态延迟动态递归神经网络(State DelayInput Dynamical Recurrent Neural Network).具有这种新的拓扑结构和学习规则的动态递归网络,不仅明确了各权值矩阵的意义,而且使权值的训练过程更为简洁,意义更为明确.仿真实验表明,这种结构的网络由于增加了网络输入输出的前一步信息,提高了收敛速度,增强了实时控制的可能性.然后将该网络用于机器人未知非线性动力学的辨识中,使用辨识实际输出与机理模型输出之间的偏差,来识别机理模型或简化模型所丢失的信息,既利用了机器人现有的建模方法,又可以减小网络运算量,提高辨识速度.仿真结果表明了这种改进的有效性.  相似文献   

4.
研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的Elman网络实现了非线性动态系统的辨识。仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的网络结构实现高阶系统的辨识,适用于具有本质非线性动态系统的辨识。  相似文献   

5.
罗南华  王伟 《控制与决策》2007,22(10):1125-1128
针对水轮发电机组的复杂动态特征,提出一种新的动态递归模糊神经网络结构,并将其应用于解决水轮发电机组的建模问题.通过在网络规则层引入乘积运算,使得复杂模糊规则容易提取,模糊推理功能易于实现.在网络隐层中引入局部递归单元,该方法能克服基于反向误差传播的静态网络辨识动态系统的局限性,提高辨识水轮发电机组动态特性的准确性.通过与其他智能方法的仿真比较,验证了所提出方法的有效性.  相似文献   

6.
袁芳  朱大奇  叶银忠 《控制工程》2011,18(5):783-787
水下机器人故障检测与辨识是机器人实现主动客错控制的关键.针对一般非线性系统执行器和传感器故障辨识问题构造了一种基于递归神经网络的故障辨识模型,并将其应用于水下机器人执行器与传感器故障检测和辨识中.2个并行递归神经网络根据水下机器人实际输出与估计输出间的误差学习调整隐藏层与输出层权矩阵,辨识机器人中发生的执行器故障和传感...  相似文献   

7.
本文基于非线形自回归滑动平均模型NARMA模 型和前馈神经网络建模的思想,提出一种输入层与输出层神经元递归的动态递归神经网络; 基于进化计算中遗传算法和进化策略与自寻优BP算法的不同结合方式,提出两种动态递归神 经网络全自动高效设计算法,实现了网络结构、权重和自反馈增益同时优化学习,实例应用 表明所提网络结构及其设计算法的有效性.  相似文献   

8.
进化策略是一类适用于非线性、不可微和多峰值复杂函数的优化方法。提出了基于混合进化策略的非线性系统辨识方法。方法的基本思想是将非线性系统辨识问题转化为参数空间上的函数优化问题,然后应用一种新的混合进化策略对整个参数空间进行搜索以获得系统参数的最优估计。仿真结果显示了该方法的有效性。  相似文献   

9.
基于ANN的动态系统状态方程辨识建模仿真   总被引:1,自引:0,他引:1  
曲东才 《计算机仿真》2006,23(10):144-146
对系统辨识原理、基于神经网络(ANN)的动态系统辨识进行了分析,针对动态系统辨识模型描述的复杂性,为简化ANN辨识建模的输入/输出关系的表达,提高算法的简洁性,采用了状态方程辨识模型,并给出了基于ANN的动态系统状态方程辨识模型。为比较分析不同网络结构的辨识建模效果及网络模型泛化能力,针对三种不同网络结构方案进行了辨识建模仿真研究。仿真结果最示,基于ANN的动态系统状态方程模型的辨识建模是有效的,并且简单合理的网络结构方案,可提高网络辨识模型的泛化能力。  相似文献   

10.
研究了递归网络模型在传感器动态建模中的应用,给出了递归网络模型的结构及相应的训练算法。该方法避免了传感器模型阶次的选择的困难,试验结果表明,应用递归网络对传感器进行动态建模是一种行之有效的方法。  相似文献   

11.
针对研究对象定量研究复杂度高的地质工作,应用计算机进行定量化和信息化的研究,需要建立一定的数学模型,然而,传统的数学方法难以得到精确的数学模型,神经网络作为一非线性建模方法,具有良好的自组织和自适应性等功能,可以逼近任意的非线性函数(映射)。本文提出利用神经网络的自组织,自学习,自适应功能实现数学模型的实时建立的方法,并在反传神经算法前馈神经网络(BP)模型引入了自适应动量因子α,使得网络计算量小,收敛速度快,最后将该模型应用到某地岩性识别动态建模中,取得了较好的效果。  相似文献   

12.
一种基于多进化神经网络的分类方法   总被引:9,自引:0,他引:9  
商琳  王金根  姚望舒  陈世福 《软件学报》2005,16(9):1577-1583
分类问题是目前数据挖掘和机器学习领域的重要内容.提出了一种基于多进化神经网络的分类方法CABEN(classification approach based on evolutionary neural networks).利用改进的进化策略和Levenberg-Marquardt方法对多个三层前馈神经网络同时进行训练.训练好各个分类模型以后,将待识别数据分别输入,最后根据绝对多数投票法决定最终分类结果.实验结果表明,该方法可以较好地进行数据分类,而且与传统的神经网络方法以及贝叶斯方法和决策树方法相比,在  相似文献   

13.
水下无人航行器(UUV)是具有较强非线性的复杂动态系统,而神经网络具有理论上逼近任意非线性的能力;为了提高UUV的动力学模型精度,运用了基于输出反馈的RBF-Elman(OFRBF-Elman)神经网络的系统辨识方法,即对Elman神经网络进行改进,将网络输出进行延时反馈,作为输入与隐层进行联接;将径向基函数作为隐层节点的激活函数,并以线性最小二乘法调整隐层到输出层的连接权值;然后,将该方法应用于UUV空间六自由度的动力学模型辨识中;最后,通过仿真证明了该网络结构的辨识算法具有很好的逼近能力和快速的训练速度。  相似文献   

14.
针对软测量建模数据中过失误差及动态递归模糊神经网络的结构复杂,大量参数难以确定的情况,提出基于免疫遗传算法动态递归模糊神经网络软测量方法。利用样本间马氏距离进行样本相似程度分析,去除样本中错误数据以提高计算速度。此外应用减法聚类确定模糊规则数,以简化网络结构,同时应用免疫遗传算法优化模型参数以提高模型的精度和泛化能力。该方法应用于赖氨酸发酵过程菌体浓度的软测量,仿真结果表明,该方法具有较高的预测精度,满足现场测量要求。  相似文献   

15.
为了改善传感器的动态响应特性,对其输出结果进行动态补偿是一个有效方法;讨论了基于自适应神经网络的传感器动态逆建模方法,采用网络分块训练和可变学习因子的方法来提高训练的精度,缩短收敛时间;研究了在加入不同信噪比的随机噪声下应用该模型实现传感器动态补偿的可行性;对典型的压电传感器模型进行了仿真,仿真结果表明补偿后传感器模型的响应速度加快,同时还可以抑制噪声;研制了基于数字信号处理器的数据采集及补偿系统并运用该系统对传感器模拟器输出的数据进行了采集,试验结果表明该系统能够准确的采集存储数据,同时还能够修正由传感器模拟器引起的动态误差。  相似文献   

16.
正交神经网络的动态建模方法研究   总被引:1,自引:0,他引:1  
This paper presents a dynamic modeling method based on orthogonal neural network, it fully uses the characteristics of the nonlinear processing ability of neural networks and the efficient disposal of the large scaling sparse problems that Givens transform can process. It can not only train the notwork quickly, but also can optimize the structure of the networks. Simulating experiments show that the new modeling method is a simple universal modeling method for the nonlinear systems.  相似文献   

17.
针对复杂非线性动态系统辨识问题,提出了一种基于过程神经元网络(PNN)的辨识模型和方法.根 据系统待辨识的模型结构和反映系统模态变化特征的动态样本数据,利用PNN 对时变输入/输出信号的非线性变 换机制和自适应学习能力,建立基于PNN 的系统辨识模型.辨识模型能够同时反映多输入时变信号的空间加权聚 合以及阶段时间效应累积结果,直接实现非线性系统输入/输出之间的动态映射关系.文中构建了用于并联结构和 串-并联结构辨识的PNN 模型,给出了相应的学习算法和实现机制,实验结果验证了模型和算法的有效性.  相似文献   

18.
吴志敏  李书臣 《控制工程》2004,11(3):216-219
提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2-4-1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差及其一阶、二阶微分,因此具有增量型PID控制结构。应用该控制系统对一非线性时变系统进行仿真研究,仿真结果表明该控制方案不仅具有良好的跟踪特性,而且对系统参数变化具有较强的鲁棒性。  相似文献   

19.
基于动态BP神经网络的系统辨识方法   总被引:20,自引:0,他引:20  
田明  戴汝为 《自动化学报》1993,19(4):450-453
本文提出一种简单的动态BP网络,并将其作为并联模型,用于离散非线性动态系统的辨识。仿真结果表明此方法是有效可行的。  相似文献   

20.
为了有效提高神经网络的集成性能,提出了基于局部分类精度估计的动态自适应选择集成的思想.根据贝叶斯理论.证明了在满足一定假设的条件下,动态自适应选择集成的分类性能可以逼近最优贝叶斯分类器.在此基础上,分别介绍了硬决策和软决策两种个体网络选择方法.选自UCI机器学习数据库的5个数据集的实验结果表明,动态自适应选择的分类性能明显优于常用的投票法和平均法,且集成分类性能对邻域的大小并不敏感;其中,软决策方法要优于硬决策方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号