首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the causal relationship between carbon dioxide emissions, electricity consumption and economic growth within a panel vector error correction model for five ASEAN countries over the period 1980–2006. The long-run estimates indicate that there is a statistically significant positive association between electricity consumption and emissions and a non-linear relationship between emissions and real output, consistent with the environmental Kuznets curve. The long-run estimates, however, do not indicate the direction of causality between the variables. The results from the Granger causality tests suggest that in the long-run there is unidirectional Granger causality running from electricity consumption and emissions to economic growth. The results also point to unidirectional Granger causality running from emissions to electricity consumption in the short-run.  相似文献   

2.
Regular observations of atmospheric mixing-ratios of carbon dioxide and methane in the urban atmosphere, combined with analyses of their carbon-isotope composition (δ13C, δ14C), provide a powerful tool for assessing both the source strength and source partitioning of those gases, as well as their changes with respect to time. Intense surface fluxes of CO2 and CH4, associated with anthropogenic activities result in elevated levels of these gases in the local atmosphere as well as in modifications of their carbon-isotope compositions. Regular measurements of concentration and carbon-isotope composition of atmospheric CO2, carried out in Krakow over the past two decades, were extended to the period 1995–2000 and also to atmospheric mixing-ratios of CH4 and its carbon-isotope composition. Radiocarbon concentrations (δ14C) in atmospheric CO2 recorded at Krakow are systematically lower than the regional background levels. This effect stems from the addition of 14C-free CO2 into the local atmosphere, originating from the burning of fossil fuels. The fossil-fuel component in the local budget of atmospheric carbon calculated using a three-component mixing model decreased from ca. 27.5 ppm in 1989 to ca. 10 ppm in 1994. The seasonal fluctuations of this component (winter–summer) are of similar magnitude. A gradually decreasing difference between the 14CO2 content in the local atmosphere and the regional background observed after 1991 is attributed to the reduced consumption of 14C-free fuels, mostly coal, in southern Poland and the Krakow municipal area. The linear regression of δ13C values of methane plotted versus reciprocal concentration, performed for the data available for Krakow sampling site, yields the average δ13C signature of the local source of methane as being equal to −54.2‰. This value agrees very well with the measured isotope signature of natural gas being used in Krakow (−54.4±0.6‰) and points to leakages in the distribution network of this gas as the main anthropogenic source of CH4 in the local atmosphere.  相似文献   

3.
吴疆 《中国能源》2012,34(10):34-37
电力单位产值CO2排放强度是全国单位产值CO2排放强度的重要组成部分,其既与电力行业排放绩效即单位发电量CO2排放强度有关,也与全社会能源效率、电气化水平、资源与市场情况等因素相关。本文系统分析了有关指标的统计特征、国际对比、影响因素及趋势预测,指出"十二五"及"十三五"期间,不论是单位电量CO2排放强度,还是电力单位产值CO2排放强度,其下降幅度都是有限的,需要理性看待并科学设置规划指标。  相似文献   

4.
This study extends the recent work of Ang (2007) [Ang, J.B., 2007. CO2 emissions, energy consumption, and output in France. Energy Policy 35, 4772–4778] in examining the causal relationship between carbon dioxide emissions, energy consumption, and output within a panel vector error correction model for six Central American countries over the period 1971–2004. In long-run equilibrium energy consumption has a positive and statistically significant impact on emissions while real output exhibits the inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) hypothesis. The short-run dynamics indicate unidirectional causality from energy consumption and real output, respectively, to emissions along with bidirectional causality between energy consumption and real output. In the long-run there appears to be bidirectional causality between energy consumption and emissions.  相似文献   

5.
A model based on fossil fuel use per capita and United Nations population predictions has been developed to predict global fossil fuel use and the resulting levels of CO2 in the atmosphere. The results suggest levels of CO2 will increase to between 415 and 421 ppm by 2025. Countries with energy-intensive economies will be responsible for the majority of CO2 emissions, while nations with large populations but low energy consumption per capita will have less of an effect. A major increase in nuclear power generation will not have a significant impact on CO2 levels over this time scale.  相似文献   

6.
Economic growth, CO2 emissions, and fossil fuels consumption in Iran   总被引:1,自引:0,他引:1  
Environmental issues have attracted renewed interest and more attention during recent years due to climatic problems associated with the increased levels of pollution and the deterioration of the environmental quality as a result of increased human activity. This paper investigates the causal relationships between economic growth, carbon emission, and fossil fuels consumption, using the relatively new time series technique known as the Toda-Yamamoto method for Iran during the period 1967–2007. Total fossil fuels, petroleum products, and natural gas consumption are used as three proxies for energy consumption. Empirical results suggest a unidirectional Granger causality running from GDP and two proxies of energy consumption (petroleum products and natural gas consumption) to carbon emissions, and no Granger causality running from total fossil fuels consumption to carbon emissions in the long run. The results also show that carbon emissions, petroleum products, and total fossil fuels consumption do not lead to economic growth, though gas consumption does.  相似文献   

7.
This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995–2007. Our empirical results show that CO2 emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO2 emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO2 emissions and CO2 emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO2 emissions will not decrease in a long period of time and reducing CO2 emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed.  相似文献   

8.
The Ni/ZrO2 catalyst is one of the most active systems for the methanation of CO to be employed in the hydrogen purification for PEMFC. This contribution aims to study the effect of ZrO2 on the methanation of CO and CO2. The catalytic behavior of Ni/ZrO2, Ni/SiO2, a physical mixture comprising Ni and ZrO2, and a double-bed reactor were evaluated. The TPD of CO and CO2, TPSR and the cyclohexane dehydrogenation reaction were carried out to describe the catalysts and the reactions. The high activity of Ni/ZrO2 catalyst toward the methanation of CO is related to the presence of active sites on the ZrO2 surface. The methanation of CO occurs on ZrO2 due to its ability to adsorb CO and also because of the hydrogen spillover phenomenon. Apparently, the effect of ZrO2 is less relevant for the methanation of CO2. Ni/ZrO2 is a very promising system for the purification of hydrogen.  相似文献   

9.
The location of a new electric power generation system with carbon capture and sequestration (CCS) affects the profitability of the facility and determines the amount of infrastructure required to connect the plant to the larger world. Using a probabilistic analysis, we examine where a profit-maximizing power producer would locate a new generator with carbon capture in relation to a fuel source, electric load, and CO2 sequestration site. Based on models of costs for transmission lines, CO2 pipelines, and fuel transportation, we find that it is always preferable to locate a CCS power facility nearest the electric load, reducing the losses and costs of bulk electricity transmission. This result suggests that a power system with significant amounts of CCS requires a very large CO2 pipeline infrastructure.  相似文献   

10.
Sources of renewable energies (for example landfill gas, wind, solar energy) are environmentally friendly and electric power generation in South Korea has concentrated on new and renewable energy technologies. The purpose of this paper is to study the economic and environmental influence of renewable energies on existing electricity generation market of South Korea with energy-economic model called ‘Long-range Energy Alternative Planning system’ and the associated ‘Technology and Environmental Database’. Business as usual scenario was based on energy supply planning with existing power plant. And then, the alternative scenarios were considered, namely the base case with existing electricity facilities, the installation plan of different renewable energy facilities, technological improvement and process dispatch rule according to merit order change. In each alternative scenario analysis, alternation trend of existing electricity generation facilities is analyzed and the cost of installed renewable energy plants and CO2 reduction potential was assessed quantitatively.  相似文献   

11.
In this paper, we investigate the CO2 microbubble removal on carbon nanotube (CNT)-supported Pt catalysts in direct methanol fuel cells (DMFCs). The experiments involve the incorporation of near-catalyst-layer bubble visualization and simultaneous electrochemical measurements in a DMFC anodic half cell system, in which CH3OH electro-oxidation generate carbon dioxide (CO2) microbubbles. We observe rapid removal of smaller CO2 bubble sizes and less bubble accumulation on a Pt-coated CNT/CC (Pt/CNT/CC, CC means carbon cloth) electrode. The improved half cell performances of the high CO2 microbubble removal efficiency on the CNT-modified electrode (Pt/CNT/CC) were 34% and 32% higher than on Pt/CC and Pt/CP electrodes, respectively.  相似文献   

12.
A binode thermal plasma is first applied to CO2 reforming of CH4 to investigate how to enlarge the process and lower energy consumption. Experimental study is conducted in two modes. One is to introduce feed gases (CH4 and CO2) only into discharge region between the first anode and the second anode as plasma-forming gas; the other is to introduce them not only into discharge region but also into the plasma jet from the exit of plasma generator. The experimental results show that, the former brings about higher conversion and selectivity but appreciably lower energy conversion efficiency due to its higher energy utilization, while the latter brings about higher energy conversion efficiency but somewhat lower conversion and selectivity due to its larger feeding of CH4 and CO2. Furthermore, during discharge in both modes, the oxidation on cathode and anode, or carbon deposition in plasma generator is not observed.  相似文献   

13.
The Logarithmic Mean Divisia Index (LMDI) method of complete decomposition is used to examine the role of three factors (electricity production, electricity generation structure and energy intensity of electricity generation) affecting the evolution of CO2 emissions from electricity generation in seven countries. These seven countries together generated 58% of global electricity and they are responsible for more than two-thirds of global CO2 emissions from electricity generation in 2005. The analysis shows production effect as the major factor responsible for rise in CO2 emissions during the period 1990–2005. The generation structure effect also contributed in CO2 emissions increase, although at a slower rate. In contrary, the energy intensity effect is responsible for modest reduction in CO2 emissions during this period. Over the 2005–2030 period, production effect remains the key factor responsible for increase in emissions and energy intensity effect is responsible for decrease in emissions. Unlike in the past, generation structure effect contributes significant decrease in emissions. However, the degree of influence of these factors affecting changes in CO2 emissions vary from country to country. The analysis also shows that there is a potential of efficiency improvement of fossil-fuel-fired power plants and its associated co-benefits among these countries.  相似文献   

14.
In order to reduce CO2 emissions from a power plant, CO2 can be captured either from the syngas that is to be burned or from the flue gases exiting the energy conversion process. Postcombustion capture has the advantage that it can be applied to retrofit existing power plants. In this paper the authors compare two primary amines (MEA and DGA) to ammonia with respect to their capability to capture CO2 from a flue gas stream. The ammonia process captures CO2 by formation of stable salts, which are separated from the solvent stream by filtration or sedimentation. These salts can be used commercially as fertilizers. Energy requirements are greatly reduced, since no heat is required for solvent regeneration, and no compression of the separated CO2 is necessary. Energy, however, is required for the reduction of ammonia emissions. In order to obtain the solid ammonia salts, their solubility has to be reduced by modification of the solvent and by lowering absorption temperature. With and without separation of the salt products, ammonia proved to be an alternative solvent with high CO2 removal efficiency. Simulation of all processes was carried out with Aspen Plus® and compared to experimental results for CO2 scrubbing with ammonia.  相似文献   

15.
The ongoing human-induced emission of carbon dioxide (CO2) threatens to change the earth's climate. A major factor in global warming is CO2 emission from thermal power plants, which burn fossil fuels. One possible way of decreasing CO2 emissions is to apply CO2 removal, which involves recovering of CO2 from energy conversion processes. This study is focused on recovery of CO2 from gas turbine exhaust of Sarkhun gas refinery power station. The purpose of this study is to recover the CO2 with minimum energy requirement. Many of CO2 recovery processes from flue gases have been studied. Among all CO2 recovery processes which were studied, absorption process was selected as the optimum one, due to low CO2 concentration in flue gas. The design parameters considered in this regard, are: selection of suitable solvent, solvent concentration, solvent circulation rate, reboiler and condenser duty and number of stages in absorber and stripper columns. In the design of this unit, amine solvent such as, diethanolamine (DEA), diglycolamine (DGA), methyldiethanolamine (MDEA), and monoethanolamine (MEA) were considered and the effect of main parameters on the absorption and stripping columns is presented. Some results with simultaneous changing of the design variables have been obtained. The results show that DGA is the best solvent with minimum energy requirement for recovery of CO2 from flue gases at atmospheric pressure.  相似文献   

16.
This study examines the influence of US–China trade on national and global emissions of carbon dioxide (CO2). The three basic questions are as follows: (1) What amount of CO2 emissions is avoided in the US by importing Chinese goods? (2) How much are CO2 emissions in China increased as a result of the production of goods for export to the US? and (3) What are the impacts of US–China trade on global CO2 emissions? Our initial findings reveal that during 1997–2003: (1) US CO2 emissions would have increased from 3% to 6% if the goods imported from China had been produced in the US, (2) About 7%–14% of China's current CO2 emissions were a result of producing exports for US consumers, and (3) US–China trade has increased global CO2 emissions by an estimated 720 million metric tons. We suggest that the export of US technologies and expertise related to clean production and energy efficiency to China could be a “win–win” strategy for both countries for reducing their trade imbalance and mitigating global CO2 emissions. Improved international accounting methodologies for assigning responsibility for CO2 emissions must be designed to account for the dynamic nature of international trade.  相似文献   

17.
Geological sequestration is a means of reducing anthropogenic atmospheric emissions of CO2 that is immediately available and technologically feasible. Among various options, CO2 can be sequestered in deep aquifers by dissolution in the formation water. The ultimate CO2 sequestration capacity in solution (UCSCS) of an aquifer is the difference between the total capacity for CO2 at saturation and the total inorganic carbon currently in solution in that aquifer, and depends on the pressure, temperature and salinity of the formation water. Assuming non-reactive aquifer conditions, the current carbon content is calculated using standard chemical analyses of the formation waters collected by the energy industry on the basis of the concentration of carbonate and bicarbonate ions. Formation water analyses performed at laboratory conditions are brought to in situ conditions using a geochemical speciation model to account for dissolved gasses that are lost from the water sample. To account for the decrease in CO2 solubility with increasing water salinity, the maximum CO2 content in formation water is calculated by applying an empirical correction to the CO2 content at saturation in pure water. The UCSCS in an aquifer is calculated by considering the effect of dissolved CO2 on the formation water density, the aquifer thickness and porosity to account for the volume of water in the aquifer pore space and for the mass of CO2 dissolved in the water currently and at saturation. The methodology developed for estimating the ultimate CO2 sequestration capacity in solution in aquifers has been applied to the Viking aquifer in the Alberta basin in western Canada. Considering only the region where the injected CO2 would be a dense fluid, the capacity of the Viking aquifer to sequester CO2 in solution in the formation water is calculated to be 100 Gt. Simple estimates then indicate that the capacity of the Alberta basin to sequester CO2 dissolved in the formation waters at depths greater than 1000 m is on the order of 4000 Gt CO2. The results also show that using geochemical models to bring the analyses of the formation waters to in situ conditions is not warranted when the current total inorganic carbon (TIC) in the aquifer water is very small by comparison with the CO2 solubility at saturation. Furthermore, in such cases, the current TIC may even be neglected.  相似文献   

18.
This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO2-trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO2 emissions associated with energy use, directed technical change and the economy. We specify CO2 capture and storage (CCS) as a discrete CO2 abatement technology. We find that combining CO2-trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R&D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target.  相似文献   

19.
Experiments on synthesis gas preparation from dry reforming of methane by carbon dioxide with thermal plasma only and cooperation of thermal plasma with commercial catalysts have been performed. In all experiments, nitrogen gas was used as the plasma gas to form a high-temperature jet injected into a tube reactor. A mixture of CH4CH4 and CO2CO2 was fed vertically into the jet. Both kinds of experiments were conducted in the same conditions, such as total flux of feed gases, the molar ratio of CH4/CO2CH4/CO2, and the plasma power except with or without catalysts in the tube reactor. Higher conversion of CH4CH4 and CO2CO2, higher selectivity of H2H2 and CO, and higher specific energy of the process were achieved by thermal plasma with catalysts. For example, the conversions of CH4CH4 and CO2CO2 were high to 96.33% and 84.63%, and the selectivies of CO and H2H2 were also high to 91.99% and 74.23%, respectively. Both were 10–20%1020% higher than those by thermal plasma only.  相似文献   

20.
The photocatalytic reduction of carbon dioxide (CO2) was studied in a self-designed circulated photocatalytic reaction system under titanium dioxide (TiO2, Degussa P-25) and zirconium oxide (ZrO2) photocatalysts and reductants at room temperature and constant pressure. The wavelengths of incident ultraviolet (UV) light for the photocatalysis of TiO2 and ZrO2 were 365 and 254 nm, respectively. Experimental results indicated that the highest yield of the photoreduction of CO2 were obtained using TiO2 with H2+H2O and ZrO2 with H2. Photoreduction of CO2 over TiO2 with H2+H2O formed CH4, CO, and C2H6 with the yield of 8.21, 0.28, and 0.20 μmol/g, respectively, while the photoreduction of CO2 over ZrO2 with H2 formed CO at a yield of 1.24 μmol/g. The detected reaction products supported the proposition of two reaction pathways for the photoreduction of CO2 over TiO2 and ZrO2 with H2 and H2O, respectively. Additionally, a one-site Langmuir-Hinshewood (L-H) kinetic model was successfully applied to simulate the photoreduction rate of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号