首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of urbanization is accelerating in China, and there are great pressures and opportunities in cities to reduce carbon emissions. An emissions inventory is a basic requirement for analyzing emissions of greenhouse gases (GHGs), their potential reduction and to realize low-carbon development of cities. This study describes a method to establish a GHGs emissions inventory in Chinese cities for 6 emission sources including industrial energy consumption, transportation, household energy consumption, commercial energy consumption, industrial processes and waste. Nanjing city was selected as a representative case to analyze the characteristics of carbon emissions in Chinese cities. The results show that carbon emissions in Nanjing have increased nearly 50% during the last decade. The three largest GHGs contributors were industrial energy consumption, industrial processes and transportation, which contributed 37–44%, 35–40% and 6–10%, respectively, to the total GHGs emissions. Per GDP carbon emissions decreased by 55% from 2002 to 2009, and the per capita and per GDP carbon emissions were comparable or even lower than the world average levels. These results have important policy implications for Chinese cities to control their carbon emissions.  相似文献   

2.
The renewable based electricity generation technologies were assessed against a range of sustainability indicators using data obtained from the literature. These indicators are cost of electricity generation, greenhouse gas emissions and energy pay-back time. All the three parameters were found to have a very wide range for each technology. For grading different renewable energy sources a new figure of merit has been proposed, linking greenhouse gas emissions, energy pay-back time and cost of electricity generated by these renewable energy sources. It has been found out that wind and small hydro are the most sustainable source for the electricity generation.  相似文献   

3.
Solar energy: Markets, economics and policies   总被引:1,自引:0,他引:1  
Solar energy has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies supportive of renewable energy development and utilization. This study analyzes the technical, economic and policy aspects of solar energy development and deployment. While the cost of solar energy has declined rapidly in the recent past, it still remains much higher than the cost of conventional energy technologies. Like other renewable energy technologies, solar energy benefits from fiscal and regulatory incentives, including tax credits and exemptions, feed-in-tariff, preferential interest rates, renewable portfolio standards and voluntary green power programs in many countries. The emerging carbon credit markets are expected to provide additional incentives to solar energy deployment; however, the scale of incentives provided by the existing carbon market instruments, such as, the Clean Development Mechanism of the Kyoto Protocol is limited. Despite the huge technical potential, the development and large scale deployment of solar energy technologies world-wide still has to overcome a number of technical, financial, regulatory and institutional barriers. The continuation of policy supports might be necessary for several decades to maintain and enhance the growth of solar energy in both developed and developing countries.  相似文献   

4.
Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO2-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.  相似文献   

5.
This work models the carbon neutralization capacity of Brazil's ethanol program since 1975. In addition to biofuel, we also assessed the mitigation potential of other energy products, such as, bioelectricity, and CO2 emissions captured during fermentation of sugar cane's juice. Finally, we projected the neutralization capacity of sugar cane's bio-energy system over the next 32 years. The balance between several carbon stocks and flows was considered in the model, including the effects of land-use change. Our results show that the neutralization of the carbon released due to land-use change was attained only in 1992, and the maximum mitigation potential of the sugar cane sector was 128 tonnes of CO2 per ha in 2006. An ideal reconstitution of the deployment of the sugar cane sector, including the full exploitation of bio-electricity's potential, plus the capture of CO2 released during fermentation, shows that the neutralization of land-use change emissions would have been achieved in 1988, and its mitigation potential would have been 390 tCO2/ha. Finally, forecasts of the sector up to 2039 shows that the mitigation potential in 2039 corresponds to 836 tCO2/ha, which corresponds to 5.51 kg of CO2 per liter of ethanol produced, or 55% above the negative emission level.  相似文献   

6.
Fossil fuel combustion is the single largest human influence on climate, accounting for 80% of anthropogenic greenhouse gas emissions. This paper presents trends in world carbon dioxide (CO2) emissions from fossil fuel combustion worldwide, based on the estimates of the International Energy Agency (IEA) [IEA, 2006a. CO2 Emissions from Fuel Combustion 1971–2004. International Energy Agency, Paris, France]. Analyzing the drivers of CO2 emissions, the paper considers regions, types of fuel, sectors, and socio-economic indicators. The paper then examines the growing body of climate change mitigation policies and measures, both multinational and federal. Policies discussed include the Kyoto Protocol, the European Union Emissions Trading Scheme, and the potential measures to be implemented in 2012 and beyond.  相似文献   

7.
An inventory of greenhouse gas emissions from various economic sectors in Lebanon was conducted following the guidelines set by the World Meteorological Organization and United Nations Environment Programme Intergovernmental Panel on Climate Change. The inventory indicated that the energy sector is the major contributor (74%) to greenhouse gas emissions. This paper describes the inventory of energy related GHG emissions and assesses mitigation options to reduce emissions from electricity generation with emphasis on the usage of renewable energy including biomass, hydropower, solar and wind resources. Policy options for overcoming barriers hindering the exploitation of renewable energy resources are discussed in the context of country-specific characteristics.  相似文献   

8.
Renewable energy policy in Turkey with the new legal regulations   总被引:1,自引:0,他引:1  
Since the energy crises in the 1970’s, public and private decision makers are considering how to achieve a sustainable transition from fossil fuel based energy to sustainable and clean energies - namely renewable energies. Combined with the improvement of energy efficiency and the rational use of energy, renewable energy can provide everything fossil fuels currently offer in terms of heating and cooling, electricity generation and transportation. Renewable energy technologies posses many long term benefits including energy security, job creation, business opportunities, sustainable development and prevention of global warming.Turkey’s population is growing at an annual rate of 1.04%. If Turkey uses only traditional energy sources, it simply will not have enough energy capacity for its population. Renewable energy sources have the potential to make a large contribution to Turkey’s sustainable and independent energy future.Turkey aims to utilize its energy potential, including from renewable sources in a cost-effective manner. Turkey targets the share of renewable resources in electricity generation to be at least 30% by 2023 has in its 2009 Electricity Market and Security of Supply Strategy. Positive achievements have been obtained in renewable energy development and manufacturing in Turkey over the past decade. The renewable energy related legislation has been intensified. To meet its 30% target, the current promotion mechanism for renewable sources of electricity relies on feed-in tariffs for different renewable energy sources. Large hydropower is already competitive to conventional fossil-based electricity, so feed-in tariffs in the new RE Law are set to facilitate expanding the deployment of other, less mature renewable energy technologies.  相似文献   

9.
Concern over global climate change has led policy makers to accept the importance of reducing greenhouse gas emissions. This in turn has led to a large growth in clean renewable generation for electricity production. Much emphasis has been on wind generation as it is among the most advanced forms of renewable generation, however, its variable and relatively unpredictable nature result in increased challenges for electricity system operators. Tidal generation on the other hand is almost perfectly forecastable and as such may be a viable alternative to wind generation. This paper calculates the break-even capital cost for tidal generation on a real electricity system. An electricity market model is used to determine the impact of tidal generation on the operating schedules of the conventional units on the system and on the resulting cycling costs, emissions and fuel savings. It is found that for tidal generation to produce positive net benefits for the case study, the capital costs would have to be less than €510,000 per MW installed which is currently an unrealistically low capital cost. Thus, it is concluded that tidal generation is not a viable option for the case system at the present time.  相似文献   

10.
Given the interest in the commercialization of affordable, clean energy technologies, we examine the prospects of solar photovoltaics (PV). We consider the question of how to transition to a meaningful percentage of solar energy in a sustainable manner and which policies are most effective in accelerating adoption. This paper develops a stochastic dynamic model of the adoption of solar PV in the residential and commercial sector under two sources of uncertainty – the price of electricity and cost of solar. The analytic results suggest that a high rate of innovation may delay adoption of a new technology if the consumer has rational price expectations. We simulate the model across alternative rates technological change, electricity prices, subsidies and carbon taxes. It is shown that there will be a displacement of incumbent technologies and a widespread shift towards solar PV in under 30 years – and that this can occur without consumer incentives and carbon pricing. We show that these policies have a modest impact in accelerating adoption, and that they may not be an effective part of climate policy. Instead, results demonstrate that further technological change is the crucial determinant and main driver of adoption. Further, results indicate that subsidies and taxes become increasingly ineffective with higher rates of technological change.  相似文献   

11.
12.
Energy efficiency and greenhouse gas emissions are closely linked. This paper reviews agricultural options to reduce energy intensities and their impacts, discusses important accounting issues related to system boundaries, land scarcity, and measurement units and compares agricultural energy intensities and improvement potentials on an international level. Agricultural development in recent decades, while increasing yields, has led to lower average energy efficiencies when comparing the 1960s and the mid 1980s. In the two decades thereafter, energy intensities in developed countries increased, but with little impact on greenhouse gas emissions. Efficiency differences across countries in the year 2000 suggest a maximum improvement potential of 500 million tons of CO2 annually. If only below average countries would increase their energy efficiency to average levels of the year 2000, the resulting emission reductions would be below 200 million tons of CO2 annually.
Pete SmithEmail: URL: http://www.abdn.ac.uk/biologicalsci/staff/details/pete.smith
  相似文献   

13.
This study addresses economic aspects of introducing renewable technologies in place of fossil fuel ones to mitigate greenhouse gas emissions. Unlike for traditional fossil fuel technologies, greenhouse gas emissions from renewable technologies are associated mainly with plant construction and the magnitudes are significantly lower. The prospects are shown to be good for producing the environmentally clean fuel hydrogen via water electrolysis driven by renewable energy sources. Nonetheless, the cost of wind- and solar-based electricity is still higher than that of electricity generated in a natural gas power plant. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of greenhouse gas emissions abatement is about four times less than if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used in a fuel cell vehicle instead of gasoline in a IC engine vehicle, the cost of greenhouse gas emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. It is also shown that when 6000 wind turbines (Kenetech KVS-33) with a capacity of 350 kW and a capacity factor of 24% replace a 500-MW gas-fired power plant with an efficiency of 40%, annual greenhouse gas emissions are reduced by 2.3 megatons. The incremental additional annual cost is about $280 million (US). The results provide a useful approach to an optimal strategy for greenhouse gas emissions mitigation.  相似文献   

14.
Australia's energy system faces a number of environmental challenges and chief among them is reducing greenhouse gas emissions. In the electricity sector, the Australian government has began implementing policies, which require greater use of gas and renewables based technologies. In this study, we simulate the optimal shares of several electricity generation technologies for Australia under a policy of greenhouse gas mitigation. In doing so, we seek to determine the likely technological investment paths over the next two decades and consider the sensitivity of those projections to assumptions regarding technological change, resource scarcity and economies or diseconomies of scale.  相似文献   

15.
The implementation of climate change mitigation strategies may significantly affect the current practices for electricity network operation. Increasing penetration of renewable energy generation technologies into electricity networks is one of the key mitigation strategies to achieve greenhouse gas emission reduction targets. Additional climate change mitigation strategies can also contribute to emission reduction thereby supplementing the renewable energy generation participation, which may be limited due to technical constraints of the network. In this paper, the penetration requirements for different renewable energy generation resources are assessed while concurrently examining other mitigation strategies to reduce overall emissions from electricity networks and meet requisite targets. The impacts of climate change mitigation strategies on the demand and generation mix are considered for facilitating the penetration of renewable generation. New climate change mitigation indices namely change in average demand, change in peak demand, generation flexibility and generation mix have been proposed to measure the level of emission reduction by incorporating different mitigation strategies. The marginal emissions associated with the individual generation technologies in the state of New South Wales (NSW) are modelled and the total emissions associated with the electricity grid of NSW are evaluated.  相似文献   

16.
Over the past decade, state policies on renewable energy have been on the rise in the U.S., providing states with various options for encouraging the generation of renewable electricity. Two promising policies, the Renewable Portfolio Standard (RPS) and the Mandatory Green Power Option (MGPO), have been implemented in many states but the evidence about their effectiveness is mixed. In this paper, we argue that recognizing the natural, social, and policy context under which MGPO and RPS are adopted is necessary in order to measure their true effectiveness. This is because the context rather than the policy might lead to positive outcomes and there is the possibility for sample bias. When controlling for the context in which the policies are implemented, we find that RPS has a negative impact on investments in renewable capacity. However, we find that investor-owned utilities seem to respond more positively to RPS mandates than publicly owned utilities. By contrast, MGPO appears to have a significant effect on installed renewable capacity for all utilities regardless of the context in which it is implemented.  相似文献   

17.
Based on best current estimates that the world needs to reduce global carbon dioxide emissions by 70% by 2050, and that there is at best a 10-year window of opportunity available to initiate the enormous changes needed, this paper proposes a set of seven self-contained steps that can be taken at a global level to tackle the problem with some prospect of success. The steps are self-financing and practicable, in that they are based on existing technologies. They involve agreement to create a new international agency charged with formulating and policing a global carbon pricing regime; a complementary step involving global monitoring of greenhouse gas emissions utilizing satellite resources; taking steps to compensate developing countries for preserving rainforest as carbon sinks; the dismantling of newly created trade barriers holding back global trade in biofuels; global promotion of a transition to renewable sources of electricity through facilitation of grid interconnections with independent power producers; a global moratorium on the building of new coal-fired power stations; and recycling of carbon revenues to promote uptake of renewable energy sources in developing countries, particularly Brazil, India and China. Taken as a group, it is argued that these steps are both necessary and sufficient. They call for institutional innovations at a global level that are politically difficult but feasible, given the magnitude of the problems addressed.  相似文献   

18.
The absence of US national action on global climate change policy has prompted initiatives by the US Congress, cities, states, and regions toward what is likely to become a long-term, collaborative effort to harmonize national energy and climate policies. This upward evolution in the face of a reluctant administration is historically consistent with the development of national legislation on other environmental and social issues in the US. At the heart of this movement is the need to resolve conflicts between high-intensity use of low-cost fossil energy supplies, and the dominating impact of carbon dioxide emissions on global climate change. US states are among the largest carbon dioxide emitters in the world and play a critical role in supplying and transforming energy, as well as consuming it, for economic advantage. State governments are also likely to have to shoulder some of the cost of potentially extensive climate damages and bear the brunt of the cost of implementing future federal mandates. As a result, many are taking proactive stances on the development of climate mitigation policy to prepare for, accelerate, and/or guide national policy. As US states show leadership on addressing greenhouse gas emissions, they also play an important role in forging policies and measures that reduce economic conflict between energy and climate goals. A number have launched or completed greenhouse gas mitigation plans and other major policies in the past few years that address these conflicts through: (1) finding ways to reduce mitigation costs, including the use of incentive-based policy instruments; (2) promoting an open and democratic policy process that includes major stakeholders; (3) promoting equity across socioeconomic groups, regions, and generations; and (4) promoting interregional cooperation. The results are promising and suggest that the state arena for climate and energy policy is evolving quickly and constructively toward alternatives that reduce conflict. Regional efforts are also unfolding, along with greater congressional attention to the lessons learned and commitments made by sub-federal actions. In the next few years many national energy and climate conflicts are likely to be tested and addressed by states. Among these, Pennsylvania is likely to be an important player due to its high profile of energy production and potential for leadership.  相似文献   

19.
This article examines how the EU׳s RES directive1 will impact domestic greenhouse gas emissions in Norway and Sweden by 2020. The directive aims for a higher RES share in the energy consumption mix, and Norway and Sweden have established a common electricity certificate scheme to help achieve these RES goals. In terms of how these two national RES plans will impact domestic emissions by 2020, factors such as nuclear power, consumption changes and the energy balance must be considered. The most practical approach to evaluate the plans’ impact on emissions is to focus on changes in carbon-based consumption within the three directive sectors.The Norwegian RES action plan will not affect domestic emissions unless the electricity surplus generated by the certificate market is used to phase out fossil fuels in domestic sectors beyond the scope of the RES directive. The use of electricity to phase out fossil fuel consumption in the offshore sector would substantially reduce Norwegian emissions figures. The Swedish plan would positively impact Swedish greenhouse gas emissions; however, this impact is limited, primarily because a substantial increase in energy consumption is expected.  相似文献   

20.
The goal of this paper is to estimate the perspectives of the Baltic States: Estonia, Latvia and Lithuania on meeting the new European Union climate commitments, i.e., to reduce greenhouse gas emissions by 20% to the year 2020 in comparison with 1990. This ambitious target could be reached based on other EU climate and energy package commitments: increase of the share of renewables and improvement of energy efficiency as tools for fulfilling the GHG emissions reduction target.The paper gives an overview on the current situation and future plans of the Baltic States in the field of energy efficiency, consumption of renewables and reduction of GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号