首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behnaz Hojjati 《Polymer》2007,48(20):5850-5858
Due to the strong tendency of nanoparticles such as metal oxides to agglomerate, homogeneous dispersion of these materials in a polymeric matrix is extremely challenging. In order to overcome this problem and to enhance the filler-polymer interaction, this study focused on living polymerization that was initialized from the surface of titania nanofillers. A new method for synthesizing TiO2/polymer nanocomposites was found with a good dispersion of the nanofillers by using the bifunctional RAFT agent, 2-{[(butylsulfanyl)carbonothioyl]sulfanyl}propanoic acid). This RAFT agent has an available carboxyl group to anchor onto TiO2 nanoparticles, and an SC(SC4H9) moiety for subsequent RAFT polymerization of acrylic acid (AA) to form n-TiO2/PAA nanocomposites. The functionalization of n-TiO2 was determined by FTIR and partitioning studies, the livingness of the polymerization was verified using GPC and NMR, while the dispersion of the inorganic filler in the polymer was studied using electron microscopy, FTIR and thermal analysis.  相似文献   

2.
Yu-Zi Jin  Yoon Bong Hahn  Youn-Sik Lee 《Polymer》2005,46(25):11294-11300
Stable polyurethane-polystyrene (PU-PS) copolymer emulsions were prepared by the polymerization of 2-hydroxyethyl acrylate (HEA)-capped PU macromonomer and styrene, using azobis(isobutyronitrile) (AIBN), a radical initiator, and 4-((benzodithioyl)methyl)benzoic acid, a reversible addition-fragmentation chain transfer (RAFT) agent. As the molar ratio of the RAFT agent to AIBN increased, the zeta potential of the resulting copolymer emulsion increased, but the average size and size distribution of the emulsion droplets decreased. A living polymerization of HEA end-capped PU macromonomer and styrene was characterized by a linear increase in the molecular weight and decrease in the molecular weight distribution with consumption of monomers. The tensile strength, hardness and water-resistance of the copolymer films, prepared from the PU-PS copolymer emulsions, were much greater than those of the films prepared from the pure PU emulsion. The copolymer emulsions, prepared via the RAFT polymerization process, are expected to exhibit better storage stability than those prepared via the conventional free radical polymerization process, due to the presence of carboxyl groups derived from the RAFT agent at the PS block termini.  相似文献   

3.
Nanocrystalline TiO2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 °C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO2, which plays an important role in improving the interconnection between TiO2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO2 films. The cell performance was further optimized by designing nanocrystalline TiO2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm−2 (AM 1.5) simulated sunlight.  相似文献   

4.
Immobilized TiO2 nanotube electrodes with high surface areas were grown via electrochemical anodization in aqueous solution containing fluoride ions for photocatalysis applications. The photoelectrochemical properties of the grown immobilized TiO2 film were studied by potentiodynamic measurements (linear sweep voltammetry), in addition to the calculation of the photocurrent response. The nanotube electrode properties were compared to mesoporous TiO2 electrodes grown by anodization in sulfuric acid at high potentials (above the microsparking potential) and to 1 g/l P-25 TiO2 powder. Photocatalyst films were evaluated by high resolution SEM and XRD for surface and crystallographic characterization. Finally, photoelectrocatalytic application of TiO2 was studied via inactivation of E. coli. The use of the high surface area TiO2 nanotubes resulted in a high photocurrent and an extremely rapid E. coli inactivation rate of ∼106 CFU/ml bacteria within 10 min. The immobilized nanotube system is proven to be the most potent electrode for water purification.  相似文献   

5.
In this paper, we report a facile method for the preparation of TiO2/polyacrylate/TiO2 multilayer core–shell hybrid emulsion through polymerization. The chemical compositions of the copolymer were studied with Fourier transform infrared. TEM images reveal that nanocomposites show different core–shell structures with different TiO2 contents. As the weight percentage of TiO2 is 2 wt% (based on monomer, same below), there are no TiO2 cores in some nanocomposites. When TiO2 increases to 3 wt%, the TiO2/polymer/TiO2 multilayer core–shell composite particles are prepared. But the TiO2 shells disappeared when the TiO2 content kept increasing. TGA shows that the TiO2 dispersed in latex films uniformly and the thermal stabilization improved with increasing TiO2 contents. The effect of operating variables such as polymerization temperature and the concentrations of polymerizable emulsifier, initiator, extremely hydrophilic monomer, modified TiO2 and HD on the kinetic behaviors was investigated. The formation mechanism of TiO2/polymer/TiO2 multilayer core–shell structure was inferred.  相似文献   

6.
Nanostructural TiO2 films with large surface areas were prepared by the combined process of graft polymerization and sol–gel for use in dye-sensitized solar cells (DSSCs). The surface of the TiO2 nanoparticles was first graft polymerized with photodegradable poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP), after which the particles were deposited onto a conducting glass. The PMMA chains were removed from the TiO2 films by UV irradiation to generate secondary pores, into which titanium isopropoxide (TTIP) was infiltrated. The TTIP was then converted into small TiO2 particles by calcination at 450 °C, as characterized by energy-filtering transmission electron microscopy (EF-TEM) and field emission scanning electron microscopy (FE-SEM). The nanostructural TiO2 films were used as a photoelectrode in solid-state DSSCs; the energy conversion efficiency was 5.1% at 100 mW/cm2, which was higher than the values achieved by the pristine TiO2 (3.8%) and nongrafted TiO2/TTIP photoelectrodes (3.3%). This performance enhancement is primarily due to the increased surface area and pore volume of TiO2 films, as revealed by the N2 adsorption–desorption isotherm.  相似文献   

7.
周威  傅和青  颜财彬  陈焕钦 《化工学报》2013,64(6):2291-2299
引言水性聚氨酯相对溶剂型聚氨酯具有不燃、气味小、不污染环境等优点[1-2],从而广泛用于涂料[3]、胶黏剂[4]、油墨[5]等领域。目前,常用于软包装领域的薄膜主要是表面能很低的非极性膜,而水性聚氨酯胶黏剂具有较高的表面自由能,对非极性膜的润湿性差,因此需要降低水性聚氨酯的表面张力,达到润湿非极性膜的目的。  相似文献   

8.
For an electrochemical water splitting system, titanate nanotubular particles with a thickness of ∼700 nm produced by a hydrothermal process were repetitively coated on fluorine-doped tin oxide (FTO) glass via layer-by-layer self-assembly method. The obtained titanate/FTO films were dipped in aqueous Fe solution, followed by heat treatment for crystallization at 500 °C for 10 min in air. The UV–vis absorbance of the Fe-oxide/titanate/FTO film showed a red-shifted spectrum compared with the TiO2/FTO coated film; this red shift was achieved by the formation of thin hematite-Fe2O3 and anatase-TiO2 phases verified using X-ray diffraction and Raman results. The cyclic voltammetry results of the Fe2O3/TiO2/FTO films showed distinct reversible cycle characteristics with large oxidation–reduction peaks with low onset voltage of IV characteristics under UV–vis light illumination. The prepared Fe2O3/TiO2/FTO film showed much higher photocurrent densities for more efficient water splitting under UV–vis light illumination than did the Fe2O3/FTO film. Its maximum photocurrent was almost 3.5 times higher than that obtained with Fe2O3/FTO film because of the easy electron collection in the current collector. The large current collection was due to the existence of a TiO2 base layer beneath the Fe2O3 layer.  相似文献   

9.
Ag nanoparticles highly dispersed into TiO2 thin films are synthesized via a remarkably simple one-pot route in the presence of a P123 triblock copolymer as template directing and reducing agents, where the reduction of Ag+ to Ag0 by in situ heat-induced reduction through the oxidation of template at 400 °C and the controlled polymerization of TiO2 take place simultaneously. The obtained mesoporous Ag/TiO2 films deposited on soda-lime glass were optically transparent and crack-free. SEM and Kr adsorption clearly prove that Ag/TiO2 films at different Ag contents are mesoporous with large surface area and regularly ordered mesopores and the thickness of the obtained films is ∼280 ± 20 nm. The pristine TiO2 film exhibits a specific surface area of 63 cm2/cm2 and specific pore volume of 0.013 mm3/cm2 that it is decreased to 42 cm2/cm2 and 0.010 mm3/cm2 respectively as a result of Ag-loaded mesoporous TiO2. The newly prepared photocatalysts Ag/TiO2 films were evaluated for their photocatalytic degradation of 2-chlorophenol as a model reaction. It was found that the meso-ordered Ag/TiO2 films are more photoactive 8 times than nonporous commercial photocatalysts Pilkington Glass Activ™. The recycling tests indicated that Ag/TiO2 films was quite stable during that liquid-solid heterogeneous photocatalysis since no significant decrease in activity was observed even after being used repetitively for 10 times, showing a good potential in practical application. In general, the cubic mesoporous Ag/TiO2 nanocomposites are stable and can be recycled without loss of their photochemical activity.  相似文献   

10.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.  相似文献   

11.
The application of heterogeneous photocatalysis is described as an advanced oxidation process (AOP) for the degradation of the diazo reactive dye using immobilized TiO2 as a photocatalyst. Starting TiO2 solutions were prepared with and without the addition of polyethylene glycol (PEG) and TiO2 films were directly deposited on a borosilicate glass substrate using the sol-gel dip-coating method. The surface morphology and the nanoscale roughness of TiO2 films were studied by means of atomic force microscopy (AFM). Structural properties of TiO2 were identified by X-ray diffraction (XRD). The decomposition behaviour of organic compounds from the gels was investigated using thermal gravimetry (TG) and differential scanning calorimetry (DSC). Photocatalytic activities of TiO2 films in the process of degradation of the commercial diazo textile dye Congo red (CR), used as a model pollutant, were monitored by means of UV/vis spectrophotometry. The kinetics of the degradation of the CR dye was described with the Langmuir-Hinshelwood (L-H) kinetic model.The addition of PEG to the TiO2 solution resulted in the changes in the film surface morphology, and affected the ratio of anatase-rutile crystal phases and the photocatalytic activity of TiO2. The TiO2 film prepared with PEG is characterized by higher roughness parameters (Ra, Rmax, Rq, Rz and Zmax), a lower amount of the rutile phase of TiO2, a higher amount of the anatase phase of TiO2 and a better photocatalytic activity compared to the TiO2 film without the addition of PEG.  相似文献   

12.
Yan Zhang 《Electrochimica acta》2004,49(12):1981-1988
Horseradish peroxidase (HRP)-TiO2 film electrodes were fabricated by casting the mixture of HRP solution and aqueous titania nanoparticle dispersion onto pyrolytic graphite (PG) electrodes and letting the solvent evaporate. The HRP incorporated in TiO2 films exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about −0.35 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of HRP-Fe(III)/Fe(II) redox couple. The electron exchange between the enzyme and PG electrodes was greatly enhanced in the TiO2 nanoparticle film microenvironment. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and formal potential (E°′) were estimated by fitting the data of square wave voltammetry with nonlinear regression analysis. The HRP-TiO2 film electrodes were quite stable and amenable to long-time voltammetric experiments. The UV-Vis spectroscopy showed that the position and shape of Soret absorption band of HRP in TiO2 films kept nearly unchanged and were different from those of hemin or hemin-TiO2 films, suggesting that HRP retains its native-like tertiary structure in TiO2 films. The electrocatalytic activity of HRP embedded in TiO2 films toward O2 and H2O2 was studied. Possible mechanism of catalytic reduction of H2O2 with HRP-TiO2 films was discussed. The HRP-TiO2 films may have a potential perspective in fabricating the third-generation biosensors based on direct electrochemistry of enzymes.  相似文献   

13.
Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content.  相似文献   

14.
Hybrid nanocomposite films of titanium dioxide (TiO2) in polyimide (PI) from 2,5-bis(4-aminophenyl)-1,3,4-oxadiazole (BAO) and 4,4′-oxydiphthalic anhydride (ODPA) have been successfully fabricated by an in situ sol-gel process. These nanocomposite films exhibit fair good optical transparency up to 40 wt% of TiO2 content. X-ray diffraction spectroscopy shows three sharp peaks in pure BAO-ODPA PI. It results from the intermolecular regularity. However, the intermolecular regularity in the hybrid film is disrupted by the introduction of TiO2 nanoparticles with no sharp peak in XRD spectra. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results confirm the formation of TiO2 particles in PI matrix. The surface Ti content is much lower than the theoretical bulk content in all hybrid films. The ratio of the former to the latter increases with the TiO2 content and levels off at TiO2 wt%≥20. Transmission electron microscope (TEM) images show that the TiO2 phase is well dispersed in the polymer matrix. The size of the TiO2 phase increases from 10 to 40 nm when the TiO2 content is 5-30 wt%, respectively.  相似文献   

15.
The TiO2 nanoparticles were modified by diblock copolymers, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the epoxy nanocomposites containing different TiO2 and with different contents were prepared. Subsequently, the effects of TiO2 content on the mechanical and thermal properties of nanocomposites were investigated. The results indicated that after grafting copolymers onto TiO2, the dispersion of TiO2 and interaction with epoxy matrix could be significantly increased, therefore, the mechanical properties of the nanocomposites were improved greatly. When the TiO2-PMMA-b-PS content was 1 wt%, the impact strength and flexural strength reached their the best, and increased up to 96% and 43%, respectively. Furthermore, the thermal stability of the nanocomposites was also distinctly improved.  相似文献   

16.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

17.
The effect of TiO2 on the formation and microstructure of magnesium aluminate spinel (MgAl2O4) at 1600 °C in air and reducing conditions were investigated. Under reducing conditions, stoichiometric MgAl2O4 spinel shifted toward alumina-rich types owing to volatilization of MgO, resulting in an increase in the porosity of fired samples. Addition of graphite to mixtures of MgO and Al2O3 intensified the reducing conditions and accelerated the formation of non-stoichiometric MgAl2O4. For TiO2-containing samples on addition of MgAl2O4, magnesium aluminum titanium oxide (MgxAl2(1−x)Ti(1+x)O5, x = 0.2 or 0.3) was detected as a minor phase. Under reducing conditions, XRD peak shifts were smaller for TiO2-containing samples than for samples without TiO2 owing to the formation of a solid solution of TiO2 in MgAl2O4 and establishment of alumina-rich spinel, which have opposite effects on increasing the lattice parameter. In bauxite-containing samples, MgAl2O4 spinel, corundum, magnesium orthotitanate spinel (Mg2TiO4) and amorphous phases were identified. Mg2TiO4 spinel formed a complete solid solution with MgAl2O4 spinel but Mg2TiO4 remained as a distinct phase owing to the heterogeneous microstructure of bauxite-containing samples. Also dense microstructure established in air fired TiO2 containing samples. The results are discussed with emphasis on the application and design of alumina-magnesia-carbon refractory materials, which are used in the steel industry.  相似文献   

18.
Composite nanofibers consisting of Mn2O3 and TiO2 were prepared by the electrospinning process, and tested as Gram-class-independent antibacterial agent and photocatalyst for organic pollutants degradation. Initially, electrospinning of a sol–gel consisting of titanium isopropoxide, manganese acetate tetrahydrate and poly(vinyl pyrrolidone) was used to produce hybrid polymeric nanofibers. Calcination of the obtained nanofibers in air at 650 °C led to produce good morphology Mn2O3/TiO2 nanofibers. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometry (XRD) analysis was also used to characterize the chemical composition and the crystallographic structure of the sintered nanofibers. The antibacterial activity of Mn2O3/TiO2 nanofibers against Gram negative and Gram positive bacteria was investigated by calculating the minimum inhibitory concentration after treatment with the nanofibers. Investigations revealed that the lowest concentration of Mn2O3/TiO2 nanofibers solution inhibiting the growth of Staphylococcus aureus ATCC 29231 and Escherichia coli ATCC 52922 strains is 0.4 and 0.8 μg/ml, respectively. Incorporation of Mn2O3 significantly improved the photodegradation of methylene blue (MB) dye under the visible light irradiation due to enhancing rutile phase formation in the TiO2 nanofibers matrix.  相似文献   

19.
Genhua Zheng 《Polymer》2005,46(8):2802-2810
Star polymers based on styrene/divinyl benzene (St/DVB) and PSt-b-poly(N-isopropyl acrylamide) (NIPAAM)/DVB have been successively prepared by ‘arm-first’ method via reversible addition-fragmentation chain transfer (RAFT) polymerization. The linear macro RAFT agent PSt-SC(S)Ph was prepared by RAFT polymerization of St using benzyl dithiobenzoate and AIBN as RAFT agent and initiator. Successive RAFT polymerization of NIPAAM with PSt-SC(S)Ph as macro RAFT agent to afford diblock copolymer, PSt-b-PNIPAAM-SC(S)Ph. The coupling reactions of PSt-SC(S)Ph or PSt-b-PNIPAAM-SC(S)Ph in the presence of DVB produced the star copolymers, C(PSt)n or C(PSt-b-PNIPAAM)n. The molar ratio of DVB/PSt-SC(S)Ph and polymerization time influenced the yields, molecular weight and distribution of the star-shaped polymers, which was characterized by 1H NMR and IR spectra, GPC measurements as well as DLS.  相似文献   

20.
In this study, we demonstrate the fabrication of multifunctional composite polyurethane (PU) membrane from a sol gel system containing TiO2 and fly ash (FA) nanoparticles (NPs). The adsorptive property of FA and photocatalytic property of TiO2 can introduce different functionalities on PU mat for water purification. Different types of PU nanofiber mats were prepared by varying the composition of NPs in blend solution. FE-SEM, TEM, TGA, XRD, UV–visible spectra, and water contact angle measurement confirmed the incorporation of FA and TiO2 NPs on/into PU nanofibrous mat. The influence of NPs on PU membrane was evaluated from the adsorption of heavy metals (Hg, Pb), removal of dyes (methylene blue), antibacterial activity, and water flux. The improvement of all these activities is attributed to the adsorptive property of FA and photocatalytic/hydrophilic property of TiO2 NPs. Therefore, as-synthesized composite membrane can be utilized as an economically friendly filter media for water purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号