首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel method for fabricating polarization-stable oxide-confined single-mode GaAs based vertical cavity surface emitting lasers (VCSELs) emitting at 850 nm using a new soft-lithography nano-imprint technique. A monolithic surface grating is etched in the output mirror of the laser cavity using a directly imprinted silica-based sol-gel imprint resist as an etch mask. The opto-electronic performance of these devices is compared to VCSELs fabricated by state-of-the-art electron-beam lithography. The lasers made using the soft nano-imprint technique show single-mode TM lasing at a threshold and laser slope similar to that of devices made by e-beam lithography. The soft nano-imprint technique also enables the fabrication of gratings with sub-wavelength pitch, which avoids diffraction losses in the laser cavity. The resulting single-mode VCSEL devices exhibit 29% enhanced efficiency compared to devices equipped with diffractive gratings.  相似文献   

2.
Marsh JP  Mar DJ  Jaffe DT 《Applied optics》2007,46(17):3400-3416
Immersion gratings, diffraction gratings where the incident radiation strikes the grooves while immersed in a dielectric medium, offer significant compactness and performance advantages over front-surface gratings. These advantages become particularly large for high-resolution spectroscopy in the near-IR. The production and evaluation of immersion gratings produced by fabricating grooves in silicon substrates using photolithographic patterning and anisotropic etching is described. The gratings produced under this program accommodate beams up to 25 mm in diameter (grating areas to 55 mm x 75 mm). Several devices are complete with appropriate reflective and antireflection coatings. All gratings were tested as front-surface devices as well as immersed gratings. The results of the testing show that the echelles behave according to the predictions of the scalar efficiency model and that tests done on front surfaces are in good agreement with tests done in immersion. The relative efficiencies range from 59% to 75% at 632.8 nm. Tests of fully completed devices in immersion show that the gratings have reached the level where they compete with and, in some cases, exceed the performance of commercially available conventional diffraction gratings (relative efficiencies up to 71%). Several diffraction gratings on silicon substrates up to 75 mm in diameter having been produced, the current state of the silicon grating technology is evaluated.  相似文献   

3.
Prototype devices capable of variable attenuation at a fixed wavelength, wavelength tuning at a constant attenuation, and combinations of these spectral characteristics are demonstrated in CO2 laser-induced long-period fiber gratings (LPFGs). These devices are based on controlled flexure by means of a piezoceramic platform. CO2 laser-induced LPFG characteristics along with the fabrication and testing processes of these gratings are discussed. Devices with a optical attenuation of 13 dB and a wavelength tuning of 7 nm are reported.  相似文献   

4.
王国栋  夏果  李志远  胡明勇  陆红波 《光电工程》2018,45(10):180195-1-180195-12
随着紫外光谱探测技术的广泛应用,低成本便携式紫外-可见光谱仪成为该领域的研究热点。本文首先依据交叉型Czerny-Turner结构设计了便携式紫外光谱仪光路结构。其次,针对性研究了紫外光谱仪的关键器件:紫外探测器和闪耀光栅。利用Lumogen荧光材料和蒸镀成膜法制作镀膜紫外增强CCD,并分析了荧光薄膜在CCD表面的位置对分辨率的影响;从理论上分析了闪耀光栅对于紫外波段的多级衍射效率的影响,确定了紫外光谱仪对于闪耀光栅的选择。最后,研制的便携式紫外-可见光谱仪样机的性能测试结果表明,200 nm~900 nm波段、25 μm狭缝宽度、600 lp/mm、300 nm闪耀光栅配置下分辨率整体小于1.5 nm,200 nm~300 nm紫外波段的光谱响应度提高到20%,实现了便携式紫外-可见光谱仪的设计要求。  相似文献   

5.
Liu J  Chen RT  Davies BM  Li L 《Applied optics》1999,38(34):6981-6986
Holographic gratings are modeled and designed for path-reversed substrate-guided-wave wavelength-division demultiplexing (WDDM) as a continuation of earlier research [Appl. Opt. 38, 3046 (1999)]. An efficient and practical method is developed to simulate the slanted volume holographic gratings. The trade-off between dispersion and the bandwidth of the holograms is analyzed. A 60 degrees (incident angle of the grating)/60 degrees (diffraction angle of the grating in air) grating structure is selected to demultiplex optical signals in the 1555-nm spectral region, and a 45 degrees /45 degrees grating structure is chosen for the spectral region near 800 nm. Experimental results are consistent with the simulation results for these two WDDM devices. A four-channel WDDM is also demonstrated at a center wavelength of 1555 nm and with a channel spacing of 2 nm.  相似文献   

6.

The ridge waveguide integrated grating couplers (GCs) in lithium niobate on insulator (LiNbO3, LNOI) were designed, fabricated and characterized. Two ends of the tapered GCs were connected by the subwavelength gratings (SWG) waveguide of a sub-micrometric-diameter, the photonic-wire SWG structure was featured with the profile of side-walls corrugations, and the effect of geometrical dimensions on the output optical response was investigated. All the devices structure patterns for the integrated LNOI GCs could be simultaneously defined by one step of electron-beam lithography, and then easily fabricated by the optimized dry-etching processes, followed by samples surface cleaning. After the fabrication, a low coupling loss of ? 5.1 dB/coupler at the telecommunication wavelength of 1561 nm was measured in the best thin-film LiNbO3 (TFLN) surface grating coupler for quasi-transverse-electric (quasi-TE) polarized signals, and a broad 3-dB optical bandwidth of wider than 95 nm was also obtained. The compact components exhibited magnificent performance, and might show the potential functionalities for the TFLN-based integrated optical waveguide devices.

  相似文献   

7.
Polarization dependence of UV-written Bragg gratings in buried ion-exchanged glass waveguides is investigated. A polarization-dependent shift in Bragg wavelength of less than 0.02 nm is measured, both for the even and the odd modes of a laterally dual-mode waveguide. The measured wavelength shift corresponds to a waveguide birefringence of the order of 10(-5), which is negligible for most applications in optical communications. It is observed that the UV-induced birefringence is small, within the limits of the measurement accuracy. The thermal stability of the fabricated gratings is also very good. The results are of particular importance for devices considered here since they require a polarization-independent mode-converting waveguide Bragg grating. Polarization-independent performance of these gratings enables the fabrication of a new class of integrated optical devices for telecommunication applications.  相似文献   

8.
Zhang X  Ma Z  Luo R  Gu Y  Meng C  Wu X  Gong Q  Tong L 《Nanotechnology》2012,23(22):225202
We demonstrate single-nanowire plasmonic gratings made by focused-ion-beam milling of single Au nanowires. At the optical communication band, a 290?nm diameter Au nanowire with grating length of 15.6?μm offers evident grating features with a transmission dip up to ~3.3?dB. The grating effects in typical Au nanowires with different grating parameters (e.g.?grating depth, width and length) are also investigated. Our results suggest a novel approach to one-dimensional plasmonic gratings with high compactness and flexibility, which may find applications in low-dimensional wavelength-selective plasmonic circuits and devices.  相似文献   

9.
Periodic micro- and nanostructures (gratings) have many significant applications in electronic, optical, magnetic, chemical and biological devices and materials. Traditional methods for fabricating gratings by writing with electrons, ions or a mechanical tip are limited to very small areas and suffer from extremely low throughput. Interference lithography can achieve relatively large fabrication areas, but has a low yield for small-period gratings. Photolithography, nanoimprint lithography, soft lithography and lithographically induced self-construction all require a prefabricated mask, and although electrohydrodynamic instabilities can self-produce periodic dots without a mask, gratings remain challenging. Here, we report a new low-cost maskless method to self-generate nano- and microgratings from an initially featureless polymer thin film sandwiched between two relatively rigid flat plates. By simply prising apart the plates, the film fractures into two complementary sets of nonsymmetrical gratings, one on each plate, of the same period. The grating period is always four times the thickness of the glassy film, regardless of its molecular weight and chemical composition. Periods from 120 nm to 200 microm have been demonstrated across areas as large as two square centimetres.  相似文献   

10.
Wang W  Zhou C  Jia W 《Applied optics》2008,47(10):1427-1429
We report the experimental results of using the soft lithography method for replication of Dammann gratings. By using an elastomeric stamp, uniform grating structures were transferred to the UV-curable polymer. To evaluate the quality of the replication, diffraction images and light intensity were measured. Compared with the master devices, the replicas of Dammann gratings show a slight deviation in both surface relief profile and optical performance. Experimental results demonstrated that high-fidelity replication of Dammann gratings is realized by using soft lithography with low cost and high throughput.  相似文献   

11.
一种计算声表面波在周期栅阵中传播特性的方法   总被引:1,自引:1,他引:0  
徐方迁  金步平 《声学技术》2008,27(4):612-615
Hashimoto有限元程序是日本Chiba大学研究人员从1973年开始、历时几十年用Fortran语言编写、计算声表面波在周期栅阵中传波特性的一个软件包。该程序能计算Rayleigh波、漏表面波、SH型表面波、表面横波等多种声表面波的传输特性,同时它能适用于一个周期内单根指条、两根指条和多根指条及声表面波在栅阵中斜入射的情况。该程序已在声表面波(SAW)研究人员中得到了广泛的应用。  相似文献   

12.
Two Mo/Si multilayer-coated blazed gratings have been fabricated for operation at soft-x-ray wavelengths above the Si L edge, λ ≥ 12.4 nm, at (near) normal incidence. The sawtooth profile of the grating structure was mechanically ruled into a 200-nm Au film that was deposited onto a plane glass substrate. To smooth the rough Au surface and to prevent interdiffusion of the Au film with the upper Mo/Si multilayer, a carbon film was evaporated onto the Au grating surface of one of the gratings before the deposition of the multilayer coating. We matched the multilayer grating, working on blaze in the third diffraction order, in which an absolute diffraction efficiency of 3.4% at a wavelength of 14 nm was measured, whereas only 1.1% was achieved for a similar grating (without a carbon interlayer). These efficiencies are higher than those obtained for other ruled blazed gratings reported in the literature. As a result of the multilayer and grating periodicity, the wavelength of diffraction can be tuned bya rotation of the grating, which is important for application in a soft-x-ray monochromator.  相似文献   

13.
The ability to control light direction with tailored precision via facile means is long‐desired in science and industry. With the advances in optics, a periodic structure called diffraction grating gains prominence and renders a more flexible control over light propagation when compared to prisms. Today, diffraction gratings are common components in wavelength division multiplexing devices, monochromators, lasers, spectrometers, media storage, beam steering, and many other applications. Next‐generation optical devices, however, demand nonmechanical, full and remote control, besides generating higher than 1D diffraction patterns with as few optical elements as possible. Liquid crystals (LCs) are great candidates for light control since they can form various patterns under different stimuli, including periodic structures capable of behaving as diffraction gratings. The characteristics of such gratings depend on several physical properties of the LCs such as film thickness, periodicity, and molecular orientation, all resulting from the internal constraints of the sample, and all of these are easily controllable. In this review, the authors summarize the research and development on stimuli‐controllable diffraction gratings and beam steering using LCs as the active optical materials. Dynamic gratings fabricated by applying external field forces or surface treatments and made of chiral and nonchiral LCs with and without polymer networks are described. LC gratings capable of switching under external stimuli such as light, electric and magnetic fields, heat, and chemical composition are discussed. The focus is on the materials, designs, applications, and future prospects of diffraction gratings using LC materials as active layers.  相似文献   

14.
Bragg gratings are recorded in doped and partially polymerized poly(methyl methacrylate) with green light (wavelength, 532 nm) in transmission geometry, and the gratings are read in reflection geometry with infrared light (wavelength, approximately 1550 nm). Diffraction efficiencies of more than 99% with a wavelength bandwidth of approximately 1 nm are obtained for single gratings with a typical length of 15 mm. Superposition of four gratings in a volume sample has been demonstrated as well. The material is promising for use in the fabrication of add-drop filters, attenuators, switches, and multiplexers-demultiplexers for optical networks that use wavelength division multiplexing.  相似文献   

15.
The polarization and transmission characteristics of freestanding gold transmission gratings, with 200-nm periods, for extreme-ultraviolet (EUV) radiation (1 < 200 nm) have been measured. We find that EUV transmission through the gratings is dominated by the waveguide characteristics of the gratings and that polarization efficiencies of 90% for wavelengths of 121.6 nm are achievable. Both the EUV polarization and transmission properties are in good agreement with a complete vector, numerical solution of Maxwell's equations. The fraction of open area to total area of the grating has been measured using a 10-keV proton beam and was found to be in good agreement with the microscopic slit and wire dimensions that were obtained by scanning electron microscopy. The use of these gratings for particle measurements in the presence of intense EUV radiation is briefly discussed.  相似文献   

16.
Germanosilicate thin films have been elaborated by the sol–gel process and the dip-coating technique. Pulsed or continuous wave UV laser (244 nm) was used to write permanent gratings in these films. In the case of exposure to cw laser, the grating diffraction efficiencies were measured using a focused beam from a He–Ne laser at 633 nm and photo-induced changes in refractive index as high as 4×10−3 have been obtained. The thermal behaviour of these gratings has been investigated showing a good stability up to 400°C. Exposure to pulsed fringe pattern led to a glass photo-expansion modulated by a strong corrugation which can be due mainly to photo-ablation at the places of the bright fringes. The waveguide surface at the grating places was investigated through Atomic Force Microscopy (AFM) and microscopic profilometry techniques. Preliminary results on the kinetics of the grating growths are also reported.  相似文献   

17.
This work discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 to 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.  相似文献   

18.
Resonant grating waveguide structures were used to fabricate narrow-bandwidth optical filters. Azopolymer films were deposited on top of slab waveguides, and surface relief gratings were optically inscribed on them to be used as couplers. This technique is a simple one-step process and produces efficient gratings with high accuracy. Sharp resonant peaks are observed in the transmission and the reflection spectra of these structures. The thickness and the index of refraction of the waveguide can be accurately determined from these resonances by use of modal theory. These parameters are then used in the design of an optical filter. Bandwidths of less than 1 nm and a decrease in transmitted signal of 60% are reported. Measurement of these values was limited by the divergence of the probe beam.  相似文献   

19.
Fiber Bragg grating cryogenic temperature sensors   总被引:1,自引:0,他引:1  
Temperature sensing to as low as 80 K was demonstrated with 1.55-μm fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.  相似文献   

20.
The conditions for formation of nanosize gratings (∼100 nm) of ferromagnetic stripes in the illumination of thin-film (10–15 nm) paramagnetic Fe-Cr mixtures by interfering beams from an excimer laser are investigated. The ferromagnetic ordering arises as a result of the thermally stimulated clustering of Fe atoms. The gratings are formed in a certain energy interval of the laser radiation. The width of this interval depends substantially on both the interference period and the illumination time τ i. For τ i=10 ns there exists an energy interval in which gratings with periods as small as 300 nm are formed. Pis’ma Zh. Tekh. Fiz. 24, 13–20 (June 26, 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号