首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
油气集输管道内腐蚀及内防腐技术   总被引:4,自引:0,他引:4  
油气开采和集输过程中,金属管道内壁普遍发生腐蚀,多相流恶劣工况下还会发生使涂层及缓蚀剂失效。针对现场油气水输送中所经常遇到的多相流工况,对金属管道腐蚀的特点及腐蚀机理进行了探讨,并介绍了几种效果较好的内防腐技术。  相似文献   

2.
国内外油气水多相管流技术的研究   总被引:1,自引:0,他引:1  
地面油气水多相管流的研究经历了从经验、半经验关系式开始,到统一流动模型、瞬态模型和物理机理模型的发展过程。研究热点是:地形起伏多相管流的研究;油气水多相管流的研究;多相泵和多相流量计的研究;建立大型实验架,把这些在低压、小管径和低输量条件下得出的关系式加以适当修正后用到实际多相管路。筛选出一些较好的关系式,组合成一些适用范围广,精度高的组合关系式。  相似文献   

3.
地面油气水多相管流的研究经历了从经验、半经验关系式开始,到统一流动模型、瞬态模型和物理机理模型的发展过程.研究热点是地形起伏多相管流的研究;油气水多相管流的研究;多相泵和多相流量计的研究;建立大型实验架,把这些在低压、小管径和低输量条件下得出的关系式加以适当修正后用到实际多相管路.筛选出一些较好的关系式,组合成一些适用范围广,精度高的组合关系式.  相似文献   

4.
相关技术应用于油井多相流测量   总被引:2,自引:0,他引:2  
油气水多相流计量技术是当今世界流量计量领域的前沿技术,各国的石油公司和国内外二十余家科研机构开展了多相流流量计的研发工作,开发出了多种测量方法和仪器.自60年代以来,相关技术就被应用到两相流流量测量系统中,经过多年的发展现已比较成熟,目前基于相关技术的多相流流量测量系统已形成了商品化的系列仪表,在油田多相流检测中得到了很好的应用.  相似文献   

5.
推广多相流输送技术促进油气集输工艺技术进步   总被引:2,自引:0,他引:2  
本文在对国内油田推广应用多相流输送技术的必要性和可行性进行深入分析的基础上,结合我国油田实际,建议在沙漠、滩海及边远小油田、老油田,积极试验推广多相流输送技术,以促进油气集输工艺技术进步,取得好的经济效益。  相似文献   

6.
<正>多相流作为一种复杂的流体形态,广泛存在于化工、冶金、能源、环保、轻工及军工等诸多领域。近年来随着石油天然气行业的快速发展,多相流计量逐步发展成为油气工业的关键技术之一,目前国内外多相流计量装置精度低、费用高、安全风险高,技术尚不够成熟。中国石油工程建设有限公司西南分公司拥有取样式多相流分离计量技术,集成多项专利成果,并通过科技成果鉴定。该技  相似文献   

7.
高分子湍流减阻现象的发现距今已有七十余年,但还有许多关于高分子湍流减阻及降解方面的问题没有彻底解决.为总结高分子湍流减阻研究现状并展望这一领域未来的研究方向,从高分子湍流减阻的发展历史、实验研究、数值模拟、理论模型和实际应用等方面进行了综述.在此基础上,提出了抗剪切高分子减阻剂的制备、多相流湍流减阻、高分子减阻与表面减...  相似文献   

8.
基于新滩垦东 18油水采出液的乳化水含量及特性 ,分析油气水在混输过程中的流动状态。应用反相乳化降黏法和气 非牛顿流体流动规律 ,研究W /O型乳状液的降黏效果、油水混输减阻效果以及油气水混输减阻途径。结果表明 :①油气水在混输过程中容易形成呈非牛顿特性的W /O型乳状液 ,油气水混输问题可归结为气液两相流中的气 非牛顿流体流动问题 ,其水力计算可参照成熟的气液两相流动的相关处理方法 ;②采用适当的降黏剂 ,可以有效地降低W /O型乳状液的黏度和油水混输压降 ,降黏率可达到 99%以上 ,减阻率可高于 6 0 % ;③油气水混输减阻可通过采用适当的化学剂改变W /O型乳状液的内外相或阻止其形成实现 ,其关键在于降低W /O型乳状液的稠度系数和流性指数或油水界面张力。  相似文献   

9.
综述了国内外多相流计量的研究概况,主要介绍了多相流的流型识别、相分率的测量和流量的测量等计量技术的测试方法和发展现状;并简述了多相流计量技术的发展趋势,对多相流的计量具有重要意义。  相似文献   

10.
2007年8月25日,从大庆油田召开的2007年中国工程热物理学会多相流学术会议上获悉,大庆油田建设设计研究院在油气水多相混输技术研究应用领域取得显著成果,受到中国工程院院士等专家教授的高度重视和称赞。据了解,多相流混输技术是国内外油气集输与长输管道领域中的一项前沿技术,特别适用于海洋、沙漠等自然条件恶劣的油田以及已建油田的边远外围区块的开发。中国石油集团重点科技攻关项目——“油气水混相输送技术”研究,[第一段]  相似文献   

11.
�������ܵ��Ļ�������   总被引:11,自引:1,他引:10  
凝析气相是多元组分的气体混合物,以饱和烃组分为主,在输送过程中由于沿线温度、压力的变化引起的凝析和反凝析现象显著,这使凝析气的管道输送不同于气体或液体的单相输送,其管输方式可分为气液混输、气液分输。气液两相混输投资少、工期短,但要解决困凝析液的积聚而降低输送能力及液塞处置等技术问题;气液分输是先将凝析气分离,然后将天然气和凝析液分别输送,管内流体均为单相流动,气液分输又可分为双管输送和顺序输送。凝析气的气液混相输送是多相流输送的一种特例。针对东海平湖油气田海底输气管道采用多相流技术输送凝析气的实例,分析了凝析气混相输送管道压降、输量和持液率的关系,并指出了预测管路温度下降值是管路安全运行的必要条件。通过对平湖凝析气管道的运行分析,强调工艺配套是多相流技术成功应用的重要条件。  相似文献   

12.
沙漠油气田集输管线、海底油气输送管线和地面长输管线中,常遇到起伏的油气水多相管路出现段塞流,加大沿线压降、加大管壁腐蚀,甚至使管路出现不稳定的振动现象。因此如何预测沿线段塞流的流动特性参数具有重要的现实意义。文章介绍一种新开发出的具有较好用户界面具可在Windows平台下操作的段塞流软件;该软件可以从始端开始计算,也可以从终端开始计算;提供了三个可供选择的计算模型;提供了油气水多相管路沿线的压降、温降和持液率曲线图;可以计算所有的段塞流特性参数值;软件具有较高的计算精度。  相似文献   

13.
海底混输立管段瞬态流动规律及其敏感性分析   总被引:2,自引:0,他引:2  
利用OLGA 2000软件对某海底混输管道系统立管段瞬态流动规律及其敏感性进行了数值模拟分析,在立管底部、顶部以及管道入口、出口处压力波动很大,容易形成段塞流;采取适当减小立管管径、管道出口节流阀开度、多相流含水率以及增大管道出口压力、降低立管高度和增大多相流气油比等措施,可以在一定程度上减弱或消除立管中严重段塞流的影响。今后应加强数值模拟、试验模拟和理论计算等方法的综合研究,深入探讨海底混输管道立管段严重段塞流的形成机理,并探索经济、有效地控制和消除严重段塞流影响的措施。  相似文献   

14.
为了提升深水油气开发海底输送系统多相流动的安全运行水平、推进“天然气水合物(以下简称水合物)浆液输送技术”的工业化应用进程,基于所搭建的水合物流动保障实验平台,结合水合物动力学生成机理、多相流动规律和可靠性理论,开展了含水合物的海底多相管输及其堵塞风险理论与技术研究。研究结果表明:①水合物颗粒的存在,会减少分层流区域,增强段塞流动趋势,更易形成环状流和波浪流,基于小扰动法所建分层流判别准则,能合理划分实验流型数据;②考虑水合物颗粒间聚并剪切,结合有效介质理论,建立了水合物浆液的黏度、阻力计算方法,预测精度均在±20%以内;③提出了含水合物多相管输的临界悬浮流速概念,分别建立了低于该流速的气浆、高于该流速的固液多相流动机理模型,能更加合理地描述水合物颗粒与多相流动耦合影响规律; ④观察到水合物壁面沉积4阶段历程,通过不同实验条件下水合物沉积率的定量表征分析,揭示了各因素对水合物壁面沉积的作用机理;⑤定量分析了不同流型下水合物颗粒的聚并沉积状态,定性分析了各流型中水合物的堵塞机理及风险;⑥引入可靠性理论,建立了以水合物体积分数为判定条件的极限状态方程,耦合抽样及快速求解理论,实现了含水合物多相输送管道堵塞概率表征,并给出了水合物浆液管道稳定运行的安全评价等级划分原则。结论认为,该研究成果能从定性和定量两个方面有效预测多相混输管道中水合物的生成及堵塞风险,有助于保障海底输送系统多相流动的安全运行。  相似文献   

15.
海上非常规压井井筒多相流动规律实验   总被引:1,自引:1,他引:0  
海上钻井特殊工况下井涌井喷事故的处理离不开非常规压井技术。海上非常规压井井筒多相流动规律是海上非常规压井设计及实施的理论依据,具有重要的指导作用。通过自主设计建造高为12 m、内径为100 mm、可承压6 MPa的可视化井筒实验系统,开展了气上液下对冲、气液垂直向下流动以及液体在静止气体中的沉降等多种非常规压井井筒多相流动实验,对海上非常规多相流动规律进行了实验研究。结果表明:置换法中压井液的沉降速度随着压井液排量的增加而逐渐增加;压回法压井过程中井筒气泡的临界压回直径随着液相排量的增加而增加,小于临界压回粒径的气泡能够被压回,大于临界压回粒径的气泡无法被压回;当井筒内所有粒径气泡都能被压回的排量被称为临界压回排量;制约顶部压井法的主要参数是注入管下入深度,增加注液接口插入深度可以有效减小气体排量,降低成功压井的临界压井排量。  相似文献   

16.
天然气管道内腐蚀直接评价方法原理与范例   总被引:1,自引:0,他引:1  
郭秋月  刘磊  郭新锋 《焊管》2011,34(3):65-70
天然气管道内腐蚀直接评价方法(DG-ICDA)的基本思路是通过多相流模型计算临界倾角,预测天然气管道最可能积液的部位,并对该部位的腐蚀情况进行检验,由此推断管道其他部位的腐蚀情况.分析了DG-ICDA的基本原理,阐述了该方法的4个步骤.DG-ICDA不仅作为一种主要的内腐蚀评价方法可独立使用,也可作为智能检测器和试压法...  相似文献   

17.
使用混输泵代替接转站中的输油泵,可以简化站内设施,如可取消分离缓冲罐、事故罐,并可将气液分输两条管线改用一条油气混输管线,同时可降低油气进站的压力。文章介绍了多相混输泵在塔河油田的应用。塔河油田属于滚动开发油田,井间距大,原油黏度高,采用混输泵站与传统接转站相结合的布局,可减少接转站数量,扩大集输半径,降低工程投资。  相似文献   

18.
海上油田开发以水平井大斜度井居多,开发井层数多,层间矛盾大。针对目前开发方式无法实现对油层进行精细开采的现状,提出了海上油田液控智能采油工艺技术。该工艺利用八挡位井下液压滑套配合液压解码器可以实现多层的精细开采,同时设计的水嘴结构可以实现多层流量精细的调节与大产液量的调节。井下液压解码器利用排列组合的原理,在降低管线数量的同时,实现了井下层位的选择与高压控制液引导,并通过计算管线摩阻,为现场管线的选择提供了理论支撑。试验结果表明:油嘴结构可以实现0~800 m 3/d的精细调节;井下液压滑套换向功能可靠,换向压力稳定在2 MPa左右,可实现0~2800 m 3/d的产量调节。该工艺不受水深和井斜等限制,最多实现了6层井的精细开采,提高了作业效率,可为海上油田精细化开采提供技术保障,同时也可为深水油田的开发提供技术储备。  相似文献   

19.
《中国油气》2008,15(2):14-15
China's offshore oil industry will face a high-speed development with the crude oil production expected to top 50 million tons by 2010, according to a study recently released by China's State Oceanic Administration titled "China's Oceanic Development Report." Meanwhile, the offshore natural gas production will also enter a rapid growth stage. In addition, a series of new exploration technologies suitable for China's offshore areas will be developed, including 3D seismic imaging technology, data imaging logging technology, underwater multiphase flow oil and gas development technology, marginal oil field development technology and shallow sea oil and gas development technology.  相似文献   

20.
长距离油气多相混输系统工程设计   总被引:2,自引:2,他引:0  
宋承毅 《天然气工业》2010,30(4):107-110
与油气分输常规工艺相比,长距离油气混输工艺具有明显的降低投资规模的优势,可使自然条件恶劣的海上油气田和边际油气田实现有效开发。但长距离油气混输技术也是流体输送领域中最为复杂的技术之一,目前刚刚进入工业化应用阶段。为此,介绍了中国石油大庆油田建设设计研究院运用"九五"期间对这一技术攻关取得的成果,设计建成了我国石油行业规模最大的油气混输系统——哈萨克斯坦肯基亚克盐下油田长距离油气混输系统工程的经验,分析了工程概况与主要特点,讨论了需要解决的5个关键技术问题:①长距离起伏敷设混输管道压降的准确预测与管径优化;②强烈段塞流的捕集与末端分离器的平稳运行技术;③首站与混输干线事故流程的设置与控制技术;④混输干线投运与停输再启动瞬态工况的准确预测与操作程序;⑤H2S应力腐蚀与氢致开裂的抑制技术。并有针对性地提出了9项工艺技术措施。上述项目一次性投产成功,投产后平稳运行至今,开创了中国石油行业大输量、长距离油气多相混输系统工程设计的先例,其输量、长度、百万吨产能投资综合指标等都进入世界前列,被评为中国石油天然气集团公司科技十大进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号