首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氧离子束辅助激光淀积生长ZnO/Si的XPS探究   总被引:1,自引:0,他引:1  
为了探究ZnO/Si内部化学成分及有关信息,用氧离子束辅助(O+-assisted)脉冲激光淀积(PLD)法在不同实验条件下生长成ZnO/Si(111)样品.利用X射线光电子能谱(XPS)对长成的ZnO/Si异质结构进行了异位测试.通过对O1s峰及其肩状结构进行拟合、分析,得到了原子数密度比n(O)∶n(Zn),进而探究了原子数密度比与生长质量的关系.结果表明,用氧离子束辅助PLD法,可在较低的衬底温度190℃和适当O+束流条件下,生长出正化学比接近于1,且c轴单一取向最佳的ZnO/Si薄膜.用氧离子束辅助PLD淀积法生长ZnO薄膜,可以改善缺氧状况,能提供一个富氧环境.  相似文献   

2.
ZnO films were deposited on MgO substrates (ZnO/MgO) by ultrasonic spray pyrolysis. Substrate temperature varied from 200 to 350°C. The crystallographic properties and surface morphologies of the ZnO/MgO films were studied by X-ray diffraction and scanning electron microscopy. The properties of photoluminescence (PL) for the films were investigated by dependence of PL spectra on the substrate temperature and the ambient temperature. Ultraviolet (UV) emission peak (3.37 eV) was dominantly detected at 18 K, which sustained at 300 K with a reduced value of the peak energy. The ZnO/MgO films prepared at 350°C showed the strongest UV emission peak at 18 and 300 K among the films in this study.  相似文献   

3.
This article deals with the annealing of amorphous ZnO thin films prepared by pulsed laser deposition (PLD) under cryogenic conditions. The substrate holder was cooled by liquid nitrogen. X-ray diffraction analysis evidenced that as-deposited films had amorphous structures: analysis by scanning electron microscopy (SEM) revealed their fine grained surface and inner structure. Annealing at temperatures in the range of 200-800 °C resulted in a transition in the thin film crystal structure from amorphous to polycrystalline. Various properties of the ZnO films were found depending on the recrystallization temperature. In depth investigations employing SEM, X-ray diffraction, atomic force microscopy and secondary ion mass spectroscopy provided comparisons of the recrystallizations of undoped ZnO thin films during the phase transition processes from amorphous to hexagonal wurtzite structures.  相似文献   

4.
夏傲  黄剑锋  谈国强 《功能材料》2012,43(11):1403-1406
以硝酸铋和钛酸四丁酯为原料,以三氯十八烷基硅烷(OTS)为模板,采用自组装单层膜(self-as-sembled monolayers,SAMs)技术,在玻璃基板上成功制备了Bi2Ti2O7晶态薄膜。借助X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、X射线能谱(EDS)及原子力显微镜(AFM)等测试手段对Bi2Ti2O7薄膜进行了表征。结果表明,以OTS为模板利用自组装技术,经540℃煅烧2h可成功制得立方相Bi2Ti2O7晶态薄膜,且薄膜表面平整光滑,均匀致密。  相似文献   

5.
ZnO thin films were fabricated by a sol-gel method using Zn(CH3COO)2·2H2O as starting material in order to prepare an acetone gas sensor. A homogeneous and stable solution was prepared by dissolving the zinc acetate in a solution of ethanol and monoethanolamine. The sol-gel solution is coated on alumina substrates with various thicknesses by spin coating technique and heat treated to grow crystalline ZnO thin films. The effect of thickness on physical and electrical properties of as deposited ZnO thin films has been studied. The as deposited ZnO thin films were characterized by X-ray diffraction spectroscopy, field emission scanning electron microscopy and atomic force microscopy. The root mean square surface roughness factors increase with thickness of the films and found 3.9, 6.6, 9.0, and 11.28 nm for 80-, 220-, 450- and 620-nm-thin films respectively. The activation energies of the films are calculated from the resistance temperature characteristics. The sensitivities of the ZnO films towards the acetone gas were determined at an operating temperature of 200 °C. The sensitivity towards acetone vapor is strongly depending on surface morphology of the ZnO thin films.  相似文献   

6.
以掺杂质量数为2%的Al2O3:ZnO为靶材,用激光脉冲沉积法,通过改变氧压和衬底温度调整薄膜的性能,制备得到相对优质的ZnO:Al薄膜,采用x射线衍射、紫外-可见分光光度计和霍尔效应测试仪等表征其物相、光学和电学性能,最终得到电阻率为1.27×10^-3Ω/cm^-3、平均光透过率超过80%的透明导电薄膜。  相似文献   

7.
利用化学浴沉积法制备了不同Ga掺杂量的ZnS(ZnS∶Ga)薄膜,并采用热氧化法生长了Ga掺杂ZnO(ZnO∶Ga)薄膜,研究了ZnO∶Ga薄膜的表面形貌、成分及光致发光性能。结果表明:Ga的掺入改变了ZnO薄膜的微观结构、化学计量比、氧空位的相对含量,进而影响了薄膜的光致发光性能。随着Ga掺杂量增加,ZnO薄膜的致密度提高,颗粒尺寸减小;同时改善了ZnO的化学计量比,氧空位相对含量随之减少;ZnO薄膜的紫外光与可见光强度比增大。  相似文献   

8.
M.J. Chuang  C.H. Wen 《Thin solid films》2010,518(8):2290-1248
Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 °C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.  相似文献   

9.
目前,对硅基材表面利用原子层沉积技术(ALD)制备的Al_2O_3薄膜的耐蚀性鲜见研究报道。利用ALD技术在硅片表面制备非晶Al_2O_3薄膜。采用扫描电镜(SEM)观察薄膜的表面及截面形貌;采用X射线光电子能谱仪(XPS)分析薄膜的价键结构;通过交流阻抗谱和动电位极化曲线研究硅基材与薄膜在不同浸泡时间下的耐腐蚀性能;采用光学显微镜观察腐蚀过程中基材与薄膜的表面形貌。结果表明:ALD非晶态Al_2O_3薄膜具有致密结构,在浸泡过程中,镀膜基材比裸基材具有更好的耐腐蚀性能;且在长期浸泡情况下,Al_2O_3薄膜对基材仍能起到良好的保护作用。  相似文献   

10.
B.L. Zhu  X.H. Sun  F.H. Su  X.G. Wu  R. Wu 《Vacuum》2008,82(5):495-500
ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 °C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 °C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 °C, and the size was smallest in all samples, which may result in maximum Eg and E0 of the films. UV emission was observed only in the films grown at 200 °C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film.  相似文献   

11.
We prepared ZnO/n-Si heterojunctions by depositing ZnO films on n-Si substrates with different resistivities by radio-frequency magnetron sputtering. The microstructure of ZnO film was analyzed by X-ray diffraction and scanning electron microscopy. The current-voltage characteristics and ethanol gas sensing properties of the junctions were investigated at room temperature. It is found that optimization of n-Si substrate resistivity is critical to enhance the ethanol gas sensitivity of ZnO/n-Si heterojunction. The ZnO/n-Si heterojunction with n-Si substrate of 2-3 Ω cm exhibits the best ethanol gas sensing property. The junction shows the sensitivity of 29.41% to 0.24 g/L ethanol gas under + 0.52 V forward bias voltage.  相似文献   

12.
Zn(1 − x)CdxO solid solutions with a composition ranging from pure ZnO up to x = 0.062 have been grown on ZnO and c-plane sapphire substrates by using metal organic chemical vapor deposition. The optical transmission spectra were used to estimate the cadmium mole fraction of the solid solutions. The lattice deformation and morphology of these films were examined in detail using high resolution X-ray diffraction and atomic force microscopy as Cd incorporation and used substrate. Our study reveals significant lattice deformation from x ≥ 0.7%. The atomic force microscopy images show facetted grains for films grown on ZnO substrate but rather round for c-plane sapphire substrate. The grain shape is controlled by the presence of the ionic charges on the polar surface of ZnO which is disturbed by cadmium incorporation and also the employed substrate material.  相似文献   

13.
R. Bichsel  F. Levy 《Thin solid films》1984,116(4):367-372
Thin MoSe2 films were prepared by r.f. planar magnetron sputtering. Their morphological and growth characteristics were examined by scanning electron microscopy and transmission electron microscopy. The specimens show a lamellar-type microstructure with the basal plane of the crystallites perpendicular to the substrate. The film morphology is strongly influenced by the substrate temperature. The chemical composition of sputtered MoSe2 films, as a function of process parameters, was determined by X-ray microanalysis. It was found that under well-selected conditions samples with the correct stoichiometry can be obtained whereas substrate biasing decreases drastically the selenium concentration in the films.  相似文献   

14.
In order to improve the corrosion resistance and biocompatibility of NiTi surgical alloy, TiO2 and TiO2-SiO2 thin films were prepared by sol-gel method. The surface characteristics of the film, which include surface composition, microstructure and surface morphology, were studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectra (XPS), respectively. A scratching test was used to assess the interface adhesive strength between the film and substrate. The corrosion resistance of NiTi alloy coated with oxide films were studied by anodic polarization curves measurement in biological solution. Additionally, a preliminary study of the in vitro bioactivity of the films was conducted. The results indicated that TiO2 and TiO2-SiO2 (Ti/Si=4:1) films have higher electrochemical corrosion resistance and can be used as protective layers on NiTi alloy. In addition, TiO2-SiO2 composite films have better bioactivity than TiO2 film.  相似文献   

15.
Chen HC  Lee CC  Jaing CC  Shiao MH  Lu CJ  Shieu FS 《Applied optics》2006,45(9):1979-1984
Titanium oxide thin films were deposited by electron-beam evaporation with ion-beam-assisted deposition. The effect of the substrate temperature and annealing temperature on the columnar microstructure and recrystallization of titanium oxide was studied. The values of the refractive index varied from 2.26 to 2.4, indicating that the different substrate temperatures affected the film density. X-ray diffraction revealed that all films were amorphous as deposited. At annealing temperatures from 100 degrees C to 300 degrees C, only the anatase phase was formed. As the substrate temperature increased from 150 degrees C to 200 degrees C to 250 degrees C, the recrystallization temperature fell from 300 degrees C through 250 degrees C to 200 degrees C. Changing the substrate temperature resulted in the formation of various types of columnar microstructure, as determined by scanning-electron microscopy. Different columnar structures resulted in different surface morphologies, as measured by atomic-force microscopy.  相似文献   

16.
在室温下利用射频磁控溅射法在硅(100)基片上制备ZnO薄膜,利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结晶性能进行分析。研究了制备条件对薄膜沉积速率的影响。分析了薄膜沉积速率对薄膜结晶状况的影响及源气体中的氧气和氩气的流量比对薄膜结晶状况的影响。研究结果表明,薄膜的生长速率强烈依赖于射频功率和工作气压,薄膜的结晶性能强烈依赖于薄膜的沉积速率和反应气体中氧气和氩气的流量比。制备高结晶质量的ZnO薄膜的最佳工艺参数为靶到衬底的距离为4cm,输入功率为250W,源气体中氩气和氧气的流量比n(Ar)∶n(O2)为5∶20,溅射工作气压为2Pa。在最佳工艺条件下所制备的薄膜表面平整致密,接近单晶,在可见光区的透射率高达90%。  相似文献   

17.
Yinzhen Wang  Benli Chu  Qinyu He 《Vacuum》2008,82(11):1229-1232
The surface treatment effects of sapphire substrate on the quality of epitaxial ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD) were studied. The sapphire substrates have been investigated by means of atomic force microscopy (AFM) and X-ray diffraction rocking curves (XRCs). The results show that sapphire substrate surfaces have the best-quality by CMP with subsequent chemical etching. The surface treatment effects of sapphire substrate on the ZnO thin films were examined by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. Results show that the intensity of (002) diffraction peak of ZnO thin films on sapphire substrates treated by CMP with subsequent chemical etching is strongest. FWHM of (002) diffraction peak is narrowest and the intensity of UV peak of PL spectrum is strongest, indicating surface treatment on sapphire substrate preparation may improve ZnO thin films crystal quality and photoluminescent property.  相似文献   

18.
Zinc oxide (ZnO) nanotip thin films were prepared on ZnO coated nanocrystalline ITO/glass substrates by hydrothermal method. In order to obtain the ZnO nanotip arrays with high aspect ratio, the experimental conditions were optimized. The scanning electron microscope images showed that the surface morphology of ZnO thin films could be easily manipulated by changing the seed layer thickness and growth time. The ZnO nanotip thin films were grown epitaxially on ZnO seed layer coated ITO/glass substrates. The surface morphology of ZnO thin films on ITO/glass substrate changed from nanorods with a flat-top end to nanotips as the growth time was increased from 3 to 15 h. The ZnO thin films prepared under these deposition conditions were highly oriented along (002) direction. The as-prepared sample (15 h) was annealed at different temperatures (30, 100, 150, and 270 degrees C). The surface morphologies of annealed ZnO thin films did not show any remarkable change and the best crystallinity was observed at 100 degrees C. The photoluminescence spectra showed that the near band edge emission shifted to shorter wavelength as the annealing temperature was increased from 30 to 270 degrees C, it was due to the intrinsic stress in the films. This was confirmed by X-ray diffraction analyses. NPB thin films were prepared on ITO/clay and ITO/glass substrates by thermal evaporation method. The electrical properties of Ag/NPB/ITO/Clay showed the Ohmic characteristics (J proportional V(1.0)). The J-V characteristic of Ag/NPB/PMMA/ZnO/ITO/Glass showed good rectification behaviour with a diode-ideality factor of 1.36.  相似文献   

19.
W. Mi?ta  J. Ziaja 《Vacuum》2004,74(2):293-296
The Zn-Bi-O films were deposited by reactive radio frequency magnetron sputtering in oxygen atmosphere from ZnBi alloy target (wt% ratio Zn:Bi=9:1) on glass substrate at room temperature. The XRD patterns show that the films deposited on tin-doped indium oxide/glass substrates were nanocrystalline. The microstructure of Bi-doped ZnO films was studied by scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. All the obtained layers had varistor-type non-linear current-voltage (I-V) characteristics with low breakdown voltage varying from few tenths of a volt to few volts.  相似文献   

20.
Y.S. Zou  Z.X. Li  Y.F. Wu 《Vacuum》2010,84(11):1347-1352
The smooth ultra-nanocrystalline diamond (UNCD) films were prepared by microwave plasma chemical vapor deposition (MWCVD) using argon-rich CH4/H2/Ar plasmas with varying argon concentration from 96% to 98% and negative bias voltage from 0 to −150 V. The influences of argon concentration and negative bias voltage on the microstructure, morphology and phase composition of the deposited UNCD films are investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), atom force microscopy (AFM), and visible and UV Raman spectroscopy. It was found that the introduction of argon in the plasma caused the grain size and surface roughness decrease. The RMS surface roughness of 9.6 nm (10 micron square area) and grain size of about 5.7 nm of smooth UNCD films were achieved on Si(100) substrate. Detailed experimental results and mechanisms for UNCD film deposition in argon-based plasma are discussed. The deposited highly smooth UNCD film is also expected to be applicable in medical implants, surface acoustic wave (SAW) devices and micro-electromechanical systems (MEMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号