首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium copper titanium oxide (CaCu3Ti4O12, abbreviated to CCTO) films were deposited on Pt/Ti/SiO2/Si substrates at room temperature (RT) by radiofrequency magnetron sputtering. As-deposited CCTO films were treated by rapid thermal annealing (RTA) at various temperatures and in various atmospheres. X-ray diffraction patterns and scanning electron microscope (SEM) images demonstrated that the crystalline structures and surface morphologies of CCTO thin films were sensitive to the annealing temperature and ambient atmosphere. Polycrystalline CCTO films could be obtained when the annealing temperature was 700°C in air, and the grain size increased signifi- cantly with annealing in O2. The 0.8-μm CCTO thin film that was deposited at RT for 2 h and then annealed at 700°C in O2 exhibited a high dielectric constant (ε′) of 410, a dielectric loss (tan δ) of 0.17 (at 10 kHz), and a leakage current density (J) of 1.28 × 10−5 A/cm2 (at 25 kV/cm).  相似文献   

2.
In this study, films of a copper (Cu) alloy, Cu(RuHfN x ), were deposited on silicon (Si) substrates with high thermal stability by co-sputtering copper and minute amounts of Hf or Hf/Ru in an Ar/N2 gas mixture. The Cu(RuHfN x ) films were thermally stable up to 720°C; after annealing at 720°C for 1 h, the thermal stability was great enough to avoid undesired reaction between the copper and the silicon. No copper silicide was formed at the Cu–Si interface for the films after annealing at 720°C for 1 h. The Cu(RuHfN x ) films appear to be good candidate interconnect materials.  相似文献   

3.
The distribution of Si, Fe, and Cu in FeSi2 alloys, with or without the addition of Cu, were studied by electron probe microanalysis (EPMA). Alloys were prepared by slow solidification from the melt. Without Cu addition, both ε- and α-phases were clearly observed, and a β-phase surrounding the ε-phase was additionally observed after in situ annealing at 950°C for 12 h. With inclusion of 0.5 at.% Cu, the eutectoid reaction (α → β + Si) was enhanced greatly. Only 0.01 at.% Cu was dissolved into the ε-phase, with the excess Cu atoms being largely found at the outer edge of the ε-phase. Ex situ annealing at 950°C for 12 h greatly changed the distribution of Si, Fe, and Cu. The ε-phase changed its Si/Fe atomic ratio from 1.470 to 1.907, indicating an early stage of the peritectoid reaction (ε + α → β) and/or the subsequent reaction (ε + Si → β), with an increase in the Cu content up to 0.04 at.%. The size of this new phase was smaller than the original ε-phase, and this new phase was surrounded by a shell of Si/Fe with an atomic ratio of 0.727 to 1.788 and a Cu content of 0.01 at.% to 0.11 at.%. In situ annealing under the same condition yielded different results: a large amount of Si segregates from the α-phase matrix, leaving a Si/Fe atomic ratio of only 0.506 to 0.530. The peritectoid reaction of the ε-phase was found to depend on the Cu content. For the ε-phase with undetectable levels of Cu, the Si/Fe atomic ratio remained at 0.954 to 0.998, but this ratio decreased with increasing Cu content to 0.55 at 2.20 at.% Cu. A plot of at.% Cu versus Si/Fe atomic ratio revealed a local minimum at the ε-phase and expectedly at both the β- and α-phases. Nonstoichiometric structures (neither α-, β- nor ε-phases) seemed to have higher at.% Cu compared with those with the closest Si/Fe composition.  相似文献   

4.
The thermal performance of sputtered Cu films with dilute insoluble W (1.3 at.%) on barrierless Si substrates has been studied, using the analyses of focused ion beam, x-ray diffraction, and electrical resistivity measurement. The role of the Cu(W) film as a seed layer has been confirmed based on the thermal performance evaluations in both thermal cycling and isothermal annealing at various temperatures. The electrical resistivity of ∼1.8 μΩ-cm for Cu/Cu(W) film is obtained after thermal annealing at 400°C. Because of the good thermal stability, the Cu(W) seed layer is also considered to act as a diffusion buffer and is stable up to 490°C for the barrierless Si scheme. The results indicate that the Cu/Cu(W) scheme has potential in advanced barrierless metallization applications.  相似文献   

5.
The spectrum of the photoconductivity induced by the polarization field of charges at surface states and traps in the film bulk has been analyzed to determine the energy band diagram at the c-Si-SiO x interface and the changes in the electronic states after the film annealing. It is found that the energy bands are bent at the Si-SiO x interface and the Si surface is enriched in electrons. In equilibrium the photocurrent peak at 1.1 eV is due to the band-to-band transitions in the silicon part of the interface. Annealing shifts the peak to higher energies; this shift increases with an increase in the annealing temperature from 650 to 1000°C. This effect is accompanied by a decrease in the photocurrent at ≤1.1 eV and weakening of the band-edge photoluminescence near the Si surface. The changes revealed are explained by the formation of an oxide layer with Si nanoclusters at the Si-SiO x interface upon annealing. This process is caused by oxygen diffusion from the SiO x film, which occurs mainly via defects on the Si wafer surface. The photoconductivity spectrum of the samples charged by short-term application of a negative potential to silicon exhibits electronic transitions in the SiO x film, both from the matrix electronic states and from the states of the defects and Si nanoclusters in the film.  相似文献   

6.
Interfacial reactions between liquid Sn and various Cu-Ni alloy metallizations as well as the subsequent phase transformations during the cooling were investigated with an emphasis on the microstructures of the reaction zones. It was found that the extent of the microstructurally complex reaction layer (during reflow at 240°C) does not depend linearly on the Ni content of the alloy metallization. On the contrary, when Cu is alloyed with Ni, the rate of thickness change of the total reaction layer first increases and reaches a maximum at a composition of about 10 at.% Ni. The reaction layer is composed of a relatively uniform continuous (Cu,Ni)6Sn5 reaction layer (a uniphase layer) next to the NiCu metallizations and is followed by the two-phase solidification structures between the single-phase layer and Sn matrix. The thickness of the two-phase layer, where the intermetallic tubes and fibers have grown from the continuous interfacial (Cu,Ni)6Sn5 layer, varies with the Ni-to-Cu ratio of the alloy metallization. In order to explain the formation mechanism of the reaction layers and their observed kinetics, the phase equilibria in the Sn-rich side of the SnCuNi system at 240°C were evaluated thermodynamically utilizing the available data, and the results of the Sn/Cu x Ni1−x diffusion couple experiments. With the help of the assessed data, one can also evaluate the minimum Cu content of Sn-(Ag)-Cu solder, at which (Ni,Cu)3Sn4 transforms into (Cu,Ni)6Sn5, as a function of temperature and the composition of the liquid solders.  相似文献   

7.
The photoluminescence of SiO x films deposited on c-Si wafers by the thermal evaporation of SiO in a vacuum and, for the first time, doped with ErF3 by coevaporation is studied. It is shown that, like undoped SiO x films, the unannealed SiO x :ErF3 films passivate the surface of the Si wafers and, thus, increase their edge photoluminescence intensity almost fivefold. A similar increase is observed after annealing of the doped films in air at 750°C. Doping with ErF3 suppresses the photoluminescence of Si nanoclusters, if the films have been subjected to high-temperature annealing (at 750°C). In this case, the PL intensity of the band with a peak at ∼890 nm decreases as well. The ∼890 nm band is observed for the first time and, due to its features, is attributed to transitions in SiO x matrix defects. The experimentally observed effect of ErF3 doping on SiO x film photoluminescence is interpreted. An intense photoluminescence signal from Er3+ ions in the nearinfrared spectral region (the 4 I 11/24 I 15/2 and 4 I 13/24 I 15/2 transitions) is observed in the SiO x :ErF3 films annealed in air at 750°C. This finding shows that 1.54 μm luminescent emitters, which are currently in popular demand, can be produced by a simple low-cost method.  相似文献   

8.
In this study we observed significantly improved properties, over a pure copper (Cu) film, for a copper-silver alloy film made with a pure copper film co-sputtered with a minute amount of either Ag0.3N0.4 or Ag1.2N0.7 on a barrierless Si substrate. In either case, no noticeable interaction between the film␣and the Si substrate was found after annealing at 600°C for 1 h. The Cu(Ag0.3,N0.4) film was thermally stable after annealing at 400°C for 240 h. The film’s resistivity was ∼2.2 μΩ cm after annealing at 600°C, while its leakage current was found to be lower than that of a pure Cu film by three orders of magnitude. The adhesion of the Cu(Ag1.2,N0.7) film to the Si substrate was approximately seven times that of a pure Cu film to a silicon substrate. Hence, a Cu film doped with Ag and N seems to be a better candidate for both barrierless metallization and the making of superior interconnects.  相似文献   

9.
The photoluminescence, infrared absorption, and Raman spectra of amorphous multilayered nanoperiodic a-SiO x /ZrO2 structures produced by vacuum evaporation and then annealed at different temperatures (500–1100°C) are studied. It is established that the evolution of the optical properties with increasing annealing temperature is controlled by sequential transformation of Si clusters formed in the SiO x layers from nonphase inclusions to amorphous clusters and then to nanocrystals. The finally formed nanocrystals are limited in sizes by the thickness of the initial SiO x layers and by chemical reactions with ZrO2.  相似文献   

10.
Electrical activation studies were carried out on Si-implanted Al0.33Ga0.67N as a function of ion dose, annealing temperature, and annealing time. The samples were implanted at room temperature with Si ions at 200 keV in doses ranging from 1 × 1014 cm−2 to 1 × 1015 cm−2, and subsequently proximity-cap annealed from 1150°C to 1350°C for 20 min to 60 min in a nitrogen environment. One hundred percent electrical activation efficiency was obtained for Al0.33Ga0.67N samples implanted with a dose of 1 × 1015 cm−2 after annealing at either 1200°C for 40 min or at 1300°C for 20 min. The samples implanted with doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 exhibited significant activations of 74% and 90% after annealing for 20 min at 1300°C and 1350°C, respectively. The mobility increased as the annealing temperature increased from 1150°C to 1350°C, showing peak mobilities of 80 cm2/V s, 64 cm2/V s, and 61 cm2/V s for doses of 1 × 1014 cm−2, 5 × 1014 cm−2, and 1 × 1015 cm−2, respectively. Temperature-dependent Hall-effect measurements showed that most of the implanted layers were degenerately doped. Cathodoluminescence measurements for all samples exhibited a sharp neutral donor-bound exciton peak at 4.08 eV, indicating excellent recovery of damage caused by ion implantation.  相似文献   

11.
Si0.6Ge0.4 nanocrystals, of diameter <5 nm, embedded in SiO2 in the form of single layers (2.1 × 1012 nanoparticles cm–2) and five-period multilayers (above 1013 nanoparticles cm–2) have been fabricated using a low-thermal-budget process consisting of deposition by low-pressure chemical vapor deposition and crystallization by rapid thermal annealing at several temperatures and for different times. The crystallization process was monitored by Raman spectroscopy and transmission electron microscopy. The loss of integrity and compositional changes of the nanoparticles during the annealing process were characterized by Rutherford backscattering spectrometry. During the annealing process, crystallization and Ge out-diffusion have been observed to compete with each other. Annealing of samples with nanoparticles of 4.6 nm diameter at low temperature (750°C) yields poor crystallization of the nanoparticles and causes the Ge to leave them by a pure diffusive mechanism, thus destroying their integrity. At higher temperatures (≥800°C), crystallization takes place in a short period of time (<30 s) and diffusion from the crystallized material is initially hindered. For samples with nanoparticles of 3.3 nm diameter, partial crystallization is detected at 800°C and 900°C and the crystalline quality is improved in both cases as the annealing time increases. Also, the detection capabilities of the Raman spectroscopy system for the detection of a certain density of SiGe nanocrystals of given diameter and composition have been explored and the lower limit estimated.  相似文献   

12.
A band with a peak at 890 nm is detected in the photoluminescence spectra of SiO x (x ≈ 1.3) films deposited by thermal evaporation of SiO and annealed in air at 650–1150°C. The 890-nm band appears after low-temperature (∼650°C) annealing and exhibits a number of features: (i) as the annealing temperature is elevated to 1150°C, the position of the band peak remains unchanged, whereas the intensity increases by two orders of magnitude; (ii) the effects of the annealing atmosphere (air, vacuum) and the excitation wavelength and power density on the intensity of the 890-nm band differ from the corresponding effects on the well-known bands observable in the ranges 600–650 and 700–800 nm; and (iii) the photoluminescence decay is first fast and then much slower, with corresponding lifetimes of ∼9 and ∼70 μs. The observed features are inconsistent with the interpretation of photoluminescence observed in SiO x so far. Specifically, the earlier observed photoluminescence was attributed to transitions between the band and defect states in the matrix and between the states of band tails, transitions inside Si nanoclusters, and intraion transitions in rare-earth impurity ions. Therefore, we consider here the possibility of attributing the 890-nm band to transitions in local centers formed by silicon ions twofold- and/or threefold-coordinated with oxygen; i.e., we attempt to interpret the 890-nm band in the same manner as was done for luminescence in SiO2 glasses and films slightly deficient in oxygen.  相似文献   

13.
Deposition of SiO x layers of variable composition onto silicon wafers was performed by co-sputtering of spaced Si and SiO2 targets in argon plasma. Coordinate dependences of the thickness and refractive index of separately deposited Si and SiO2 layers and the SiO x layer grown during co-sputtering of targets were determined using optical techniques. It was shown that the SiO x layer composition is not equal to a simple sum of thicknesses of separately deposited Si and SiO2 layers. The coordinate dependences of the Si and SiO2 layer thicknesses were calculated. To fit the calculated and experimental data, it is necessary to assume that no less than 10% of silicon is converted to dioxide during co-sputtering. A comparison of the coordinate dependences of the IR absorbance in SiO2 and SiO x layers with experimental ellipsometric data confirmed the presence of excess oxygen in the SiO x layer. Taking into account such partial oxidation of sputtered silicon, composition isolines in the substrate plane were calculated. After annealing of the SiO x layer at 1200°C, photoluminescence was observed in a wafer area predicted by calculations, which was caused by the formation of quantum-size Si nanocrystallites. The photoluminescence intensity was maximum at x = 1.78 ± 0.3, which is close to the composition optimum for ion-beam synthesis of nanocrystals.  相似文献   

14.
Dielectric ceramics based on the solid solution (1 − x)Bi0.5Na0.5TiO3 (BNT)-xCaTiO3 (CT) were synthesized by the conventional solid-state route. BNT with various contents of CT formed a complete solid solution and exhibited a rhombohedral structure. CT in this solid solution with BNT was observed to decrease the dielectric constant at higher temperatures and raise the dielectric constant at lower temperatures. On the other hand, decreased ferroelectricity was observed with increasing CT concentration, resulting in a downward shift of the depolarization temperature and a decrease of the dissipation factor. With the addition of Mn2+ to 0.86BNT-0.14CT, the temperature characteristics of capacitance were improved (−55°C to 250°C, ΔC/C 25°C ≤ ±15%). By doping with 1.5 wt.% Mn2+, the dielectric constant at room temperature reached over 900, with a dielectric loss of less than 1%.  相似文献   

15.
The influence of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of ZnO-2TiO2-Nb2O5 (ZTN) ceramic has been investigated using dilatometry, x-ray diffraction, scanning electron microscopy, and microwave dielectric measurements. A small amount of BCB addition to ZTN can lower the sintering temperature from 1100°C to 900°C. The reduced sintering temperature was attributed to the formation of the BCB liquid phase. The ZTN ceramics containing 3.0 wt.% BCB sintered at 900°C for 2 h have good microwave dielectric properties of Q × f = 19,002 GHz (at 6.48 GHz), ε r = 45.8 and τ f  = 23.2 ppm/°C, which suggests that the ceramics can be applied in multilayer microwave devices, provided that Ag compatibility exists.  相似文献   

16.
This study investigates electrical characteristics and the formation mechanism of the Cu/Ge/Pd Ohmic contact to n-type InGaAs. After annealing the contact at 250°C for 20 min, Cu3Ge and Pd12Ga5As2 compounds formed and Ge diffused into the InGaAs layer, achieving a heavily doped InGaAs layer with a low contact resistivity of 1 × 10−6 Ω cm2. Thermal stability tests were performed on the Cu/Ge/Pd Ohmic contact to InGaAs after Ohmic contact formation, showing no obvious degradation after a 72 h reliability test at 250°C. The results indicate excellent electrical characteristics and thermal stability using Cu/Ge/Pd as an Ohmic contact metal to an n-InGaAs layer.  相似文献   

17.
A PbTiO3/Ba0.85Sr0.15TiO3/PbTiO3 (PT/BST15/PT) sandwich thin film has been prepared on Pt/Ti/SiO2/Si substrates by an improved sol-gel technique. It is found that such films under rapid thermal annealing at 700°C crystallize more favorably with the addition of a PbTiO3 layer. They possess a pure, perovskite-phase structure with a random orientation. The polarization-electric field (P-E) hysteresis loop and current-voltage (I-V) characteristic curves reveal that a PT/BST15/PT film exhibits good ferroelectricity at room temperature. However, no sharp peak, only a weak maximum, is observed in the curves of the dielectric constant versus temperature. The dielectric constant, loss tangent, leakage current density at 20 kV/cm, remnant polarization, and coercive field of the PT/BST15/PT film are 438, 0.025, 1.3 × 10−6 Acm−2, 2.46 μCcm−2, and 41 kVcm−1, respectively, at 25°C and 10 kHz. The PT/BST15/PT film is a candidate material for high sensitivity elements for uncooled, infrared, focal plane arrays (UFPAs) to be used at near ambient temperature.  相似文献   

18.
The effect of post-oxidation N2 annealing and post-metallization forming-gas annealing on the electrical properties of Pt/Hf-silicate (3 nm)/Si0.8Ge0.2(100)/n-type Si(100) metal-oxide semiconductor (MOS) capacitors is reported. Capacitance-voltage (C-V) and current density-voltage (J-V) measurements of asgrown, 3-nm-thick, hafnium-silicate films containing ∼12at.%Hf indicate a large number of bulk and interface traps with a current density of ∼10−2 A/cm2 at VFB+1 V. Post-ultraviolet (UV)/O3 oxidation annealing in N2 at 350°C for 30 min leads to a significant improvement in the electrical characteristics of the film. A post-metallization anneal (PMA) at 450°C for 30 min in forming gas (90% N2:10% H2), however, degraded the electrical properties of the films. X-ray photoelectron spectroscopy (XPS) analyses of the forming-gas-annealed films indicate that a possible cause for the degradation in electrical properties is the hydrogen-induced reduction of GeO2 in the interfacial SixGe1−xO2 oxide layer to elemental germanium. Implications for the introduction of hafnium silicate as a viable gate dielectric for SiGe-based devices are discussed.  相似文献   

19.
The results of X-ray structural investigations and current-voltage measurements of the HfO2/Si(100) structures are presented. The HfO2 films of 50 nm thickness were deposited in a Si substrate by high-frequency magnetron sputtering in argon plasma and subjected to rapid thermal annealing at 500, 700, and/or 800°C in the Ar or O2 ambient. It is shown that the HfO2 films become polycrystalline after annealing. The presence of various crystalline phases in them and the form of the I–V characteristics of the Al/HfO2/Si(100) test structures strongly depend on the growth conditions and the gas ambient during the rapid thermal annealing. It is established that the HfO2 films deposited at a high-frequency bias at a substrate of −7 V during the growth and then passed through rapid thermal treatment in the O2 ambient at 700°C have the highest breakdown voltages.  相似文献   

20.
The behavior of boron in Cu(4.8at.%B)/Ti/SiO2 was investigated as a function of temperature, and its influences on the Cu-Ti interaction, resistivity, and diffusion barrier properties were also studied. The results showed the formation of a titanium boride layer at the Cu-Ti interface, after heating the Cu(B)/Ti/SiO2 at 400°C and higher, effectively served as a barrier for the Cu and Ti diffusion, and significantly enhanced the Cu (111) texture. The resistivity dropped from 16.3 to 2.33 μΩ-cm after heating at 600°C, and continued to decrease up to 800°C. As a result, the Cu, in the form of B(O)x/Cu/TiB2/Ti(O)x/SiO2 multilayers, obtained by heating the Cu(B)/Ti/SiO2, showed high thermal stability with low resistivity and, thus, can be used as interconnections in advanced integrated circuits. Since the Cu, in the form of B(O)x/Cu/TiB2/Ti(O)x/SiO2 multilayers, obtained by heating the Cu(B)/Ti/SiO2, showed high thermal stability with low resistivity, it can be used as interconnections in advanced integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号