首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以普通马铃薯淀粉为原料,采用普鲁兰酶对淀粉进行酶解,制备缓慢消化淀粉。在单因素试验基础上,选取酶的添加量、酶解时间、淀粉乳浓度、冷藏时间进行中心组合(Box-Benhnken)实验设计,并运用Design-Expert8.05软件对数据进行分析和优化。结果表明:缓慢消化淀粉的最佳制备工艺条件为酶的添加量为160U/m L,酶解时间为8.5h,淀粉乳浓度10%,冷藏时间为3d,在此工艺条件下,获得SDS质量浓度为18.3%,为缓慢消化淀粉的开发提供理论依据。  相似文献   

2.
《粮食与油脂》2016,(11):17-20
以普通马铃薯淀粉为原料,采用β–淀粉酶对淀粉进行酶解制备缓慢消化淀粉。在单因素试验基础上,选取酶的添加量、酶解时间、冷藏回生时间进行中心组合试验设计,并运用Design–Expert 8.05软件对数据进行分析和优化。结果表明:缓慢消化淀粉的最佳制备工艺条件为酶的添加量230 U、酶解时间22 min、冷藏回生时间7 d,在此工艺条件下,获得SDS质量浓度为18.5%,为缓慢消化淀粉的开发提供理论依据。  相似文献   

3.
酶法结合高压法制备甘薯回生抗性淀粉   总被引:2,自引:0,他引:2  
本试验以甘薯淀粉为原料,采用酶解-压热法制备RS3型抗性淀粉,研究了淀粉乳浓度、压热时间、压热温度、α-淀粉酶、预糊化时间、pH值以及冷藏时间和温度对抗性淀粉制备产率的影响。结果表明:甘薯回生抗性淀粉最佳制备条件为:甘薯淀粉乳浓度为10%;α-淀粉酶加量为120U/ml;预糊化时间为30min;最佳压热温度为120℃,压热处理时间为30min;老化温度为4℃,时间为12 h。采用此工艺制备甘薯回生抗性淀粉,其制备产率可达到7.365%。  相似文献   

4.
本研究以青稞为原料,利用淀粉酶及固液分离技术降低青稞中的糖含量,制备低糖青稞粉。以淀粉水解度为指标,筛选出适宜降解青稞淀粉的淀粉酶为α-淀粉酶、普鲁兰酶和糖化酶,通过单因素实验确定单一淀粉酶的适宜酶解条件,在此基础上,筛选的最佳复合酶配比为α-淀粉酶、普鲁兰酶及糖化酶的比例为1∶2∶2,并通过单因素及正交实验优化复合酶的最佳酶解条件为酶添加量250 U/g、酶解时间3.5 h、酶解温度60℃,料液比为1∶13,此工艺条件下,青稞淀粉水解度为62.76%。  相似文献   

5.
以酶解-压热法制备紫山药抗消化淀粉,考察了淀粉乳浓度、普鲁兰酶用量、酶解时间、压热时间对制备淀粉中抗消化淀粉含量的影响,通过正交试验和方差分析明确影响因素的重要性并优化工艺条件;比较分析了糊化淀粉、压热淀粉以及酶解-压热法制备淀粉的水解动力学。结果表明:酶解-压热法制备紫山药抗消化淀粉的含量随各因素水平的增加呈先增加后减小的趋势,优化的条件为:淀粉乳质量分数20%、普鲁兰酶用量8 U/g、酶解12 h、以120℃压热处理40 min 2次时,制备抗消化淀粉样品纯度为96.67%,其中抗消化淀粉含量为47.85%;水解特性研究表明:与糊化、压热法相比,酶解-压热法制备抗消化淀粉的水解率、水解指数与血糖指数均显著降低,具有更好的抗消化性。  相似文献   

6.
以玉米淀粉为原料,采用嗜冷普鲁兰酶脱支处理和压热处理相结合的方式制备玉米抗性淀粉,考察了玉米淀粉乳质量分数、耐高温α-淀粉酶添加量、嗜冷普鲁兰酶添加量、嗜冷普鲁兰酶作用时间对抗性淀粉得率的影响,采用正交试验对压热-酶解法制备玉米抗性淀粉的工艺参数进行了优化。采用扫描电子显微镜、X-射线衍射和差示扫描量热仪对玉米抗性淀粉形貌、晶体结构、热特性进行了观察与分析。结果表明,制备玉米抗性淀粉的最佳工艺条件为:玉米淀粉乳质量分数18%、耐高温α-淀粉酶添加量7 U/g、嗜冷普鲁兰酶添加量10 U/g、嗜冷普鲁兰酶作用时间9 h。在最佳条件下,玉米抗性淀粉得率为16.84%。玉米淀粉经复合酶法处理后,抗性淀粉形成了致密的层状晶体结构,表面形态结构呈现出不同于玉米原淀粉A型晶体结构的V型晶体结构;玉米抗性淀粉的起始温度、峰值温度、终止温度和相变焓值分别为117.07、140.69、153.03 ℃和1 858.12 J/g,均高于玉米原淀粉。  相似文献   

7.
玉米抗性淀粉酶解法制备工艺的研究   总被引:3,自引:0,他引:3  
以抗性淀粉得率为评价指标,采用酶解法制备玉米抗性淀粉,通过正交试验确定了酶解法制备的最佳工艺条件:α-淀粉酶酶解条件为淀粉乳浓度20%,α-淀粉酶用量15u/g,酶解温度70℃;普鲁兰酶脱支条件为普鲁兰酶用量4u/g,脱支时间10h,pH值4.5;糊化条件为糊化时间20min,糊化温度120℃。  相似文献   

8.
本文以葛根淀粉为原料,采用加入普鲁兰酶的作用,对淀粉增抗的影响因素及工艺进行了研究,采用单因素实验和L9(34)正交实验,研究了淀粉乳浓度、冷藏温度、冷藏时间、回生次数对抗性淀粉(Resistant Starch,RS)含量百分率的影响.结果表明:回生次数是影响RS含量的主要因素;最佳增抗工艺参数:淀粉乳浓度9%、冷藏温度4℃、冷藏时间27h、回生次数3次.  相似文献   

9.
采用微波辅助酶解制备玉米抗性淀粉,以玉米抗性淀粉收率为指标,在单因素试验基础上,进行BoxBehnken试验设计,对耐高温α-淀粉酶添加量和酶解时间、普鲁兰酶添加量和酶解时间4个因素进行响应面优化试验分析。结果表明4个因素的影响主次关系为普鲁兰酶酶解时间耐高温α-淀粉酶酶解时间耐高温α-淀粉酶添加量普鲁兰酶添加量。响应面优化试验确定微波辅助酶解制备玉米抗性淀粉的最优工艺参数:耐高温α-淀粉酶添加量3 U/g干淀粉、酶解时间30 min,普鲁兰酶添加量8 U/g干淀粉、酶解时间4.5 h。  相似文献   

10.
普鲁兰酶处理条件对淀粉增抗效应的规律研究   总被引:2,自引:0,他引:2  
以大米淀粉、葛根淀粉、绿豆淀粉、藕淀粉为原材料,采用加入脱支酶的方法.研究4种淀粉提高其抗性淀粉含量的共同规律.试验结果表明:各因素的变化曲线比较一致,因素影响大小依次为淀粉乳浓度、冷藏温度、普鲁兰酶用量、普鲁兰酶解时间.得出最佳工艺为淀粉乳浓度为9%,冷藏温度为(0~4)℃,普鲁兰酶用量为5.75 ASPU/g,普鲁兰酶解时间为90 min.  相似文献   

11.
超声波对甘薯回生抗性淀粉生成的作用   总被引:3,自引:0,他引:3  
以甘薯淀粉为原料,研究超声波作用时间、作用温度、作用顺序、盐离子以及淀粉乳浓度对回生抗性淀粉制备产率的影响。研究结果表明,超声波作用下制备回生抗性淀粉的最佳工艺条件为:淀粉乳浓度20%,NaCl的最佳加入量为每100 mL淀粉乳2.0 g,α-淀粉酶加入量200 U/100 mL,酶解时间30 min,酶解温度95℃,超声波作用在酶解和高压之间,超声波作用时间60 min,作用温度30℃,压热温度120℃,压热时间30 min,老化时间12 h,在这种工艺条件下,甘薯回生抗性淀粉产率最高为8.2%,比未经超声波作用的2.5%提高了2.28倍。  相似文献   

12.
酶解法制备荞麦抗性淀粉的工艺优化   总被引:1,自引:0,他引:1  
为确定荞麦粉制备抗性淀粉的工艺条件,采用普鲁兰酶酶解脱支法,并通过单因素和正交试验研究了影响抗性淀粉得率的因素。结果表明:影响抗性淀粉得率的因素主次顺序依次为荞麦粉浓度、普鲁兰酶用量、酶解时间和酶解温度。酶解法制备荞麦抗性淀粉的适宜工艺条件为荞麦粉浓度5 g/(100 mL)、普鲁兰酶用量7.2 PUN/g、酶解温度45℃、酶解时间8 h,在此条件下测得的抗性淀粉含量为15.82%。与原粉相比,普鲁兰酶酶解脱支与湿热法相结合制备荞麦抗性淀粉使其抗性淀粉含量显著提高。  相似文献   

13.
本试验主要研究了酶学方法和湿热法制备小麦缓慢消化淀粉的影响因素和最优工艺条件。酶法制备小麦缓慢消化淀粉(SDS)实验通过控制普鲁兰酶用量、淀粉乳浓度、酶解时间、储藏温度和储藏时间等因素对样品中SDS含量的影响。湿热法制备小麦SDS实验通过近似的方法考察了热处理温度、热处理时间、贮存时间等因素。结果表明,酶法制备小麦SDS的最优工艺为淀粉乳浓度20%(干基),普鲁兰酶用量8 ASPU/mL,酶解时间4 h,储藏温度4℃,储藏时间2 d,SDS最高含量为52.8%。湿热法制备小麦SDS的最优工艺为热处理温度120℃,热处理时间1 h、贮存时间18 h,SDS最高含量为36.5%。  相似文献   

14.
中温α-淀粉酶处理提高甘薯回生抗性淀粉制备率   总被引:2,自引:1,他引:2  
以甘薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究中温α–淀粉酶处理对RS3型抗性淀粉制备产率影响。结果表明,中温α–淀粉酶处理制备甘薯回生抗性淀粉最佳工艺条件为:淀粉乳10%,中温α–淀粉酶添加量为0.02 U/mL,酶解温度80℃,酶解时间15 min,淀粉乳pH7.0;在最佳条件下制备甘薯回生抗性淀粉产率达25.45%,比对照组提高1.68倍。  相似文献   

15.
《广西轻工业》2019,(2):7-9
为了提高鲜淮山抗性淀粉的含量,该研究以鲜淮山为原料,采用压热-双酶解法制备抗性淀粉,通过单因素试验确定鲜淮山抗性淀粉的最佳制备条件为:25%淀粉乳在105℃压热50min,添加耐热α-淀粉酶0.288 KNU/g,作用15 min,添加普鲁兰酶3U/g,作用4h,老化时间24h。该条件下抗性淀粉的质量分数为43%。  相似文献   

16.
以小麦淀粉为原料,抗性淀粉得率为指标,采用超声波-酶法制备小麦RS3型抗性淀粉,在优化的超声波作用条件(淀粉乳浓度15%,超声波功率225W,超声温度50℃,超声作用时间50min)基础上,通过单因素及正交试验确定最佳的酶解工艺:耐高温α-淀粉酶添加量1U/g干淀粉,耐高温α-淀粉酶作用时间20 min,普鲁兰酶添加量10 U/g干淀粉,普鲁兰酶酶解温度50℃,酶解时间7 h。经反复验证,超声波-酶法制备小麦RS3型抗性淀粉得率为13.155%。  相似文献   

17.
本研究采用压热-酶解法制备青芒果抗性淀粉,实验以青芒果淀粉为原料,在压热条件和α-淀粉酶作用的基础上,研究普鲁兰酶酶浓度、酶解温度、酶处理p H和酶解时间对青芒果抗性淀粉含量的影响。正交实验结果表明,压热-酶解法制备青芒果抗性淀粉的最佳条件为鲁兰酶添加量30 U/g、酶解p H5、酶解时间15 h、酶解温度60℃,该条件下,青芒果抗性淀粉产率最高可达7.368%。  相似文献   

18.
研究以碎米为原料微波辅助酶法制备抗性淀粉的工艺。通过单因素和正交试验,获取最佳工艺条件:淀粉浆添加量25g/mL、微波时间90s、普鲁兰酶添加量4.0U/g 干淀粉、酶解时间2h、回生时间20h。在此条件下抗性淀粉得率为21.81%。本实验可为碎米抗性淀粉的制备提供一定参考。  相似文献   

19.
酶法处理和超声波作用对抗酶解淀粉形成的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
本文以木薯淀粉为原料,研究了α-淀粉酶、普鲁兰酶和超声波作用对抗酶解淀粉形成的影响。结果表明,酶作用对抗酶解淀粉形成的最佳条件为:淀粉浓度为5%,耐热α-淀粉酶量为10mL(酶活力为3U/mL),普鲁兰酶量为30mL(酶活力为22.5NPUN/mL),冷却升温次数为2次。得到的产品中抗酶解淀粉含量可达到14.52%。超声波频率为25kHz,作用时间为120s时,产品中抗酶解淀粉含量最高,为19.19%。  相似文献   

20.
以微波预糊化籼米淀粉为原料,采用超声波间歇式辅助,异淀粉酶和普鲁兰酶分步脱支酶解制备了RS_3型籼米抗性淀粉。以RS_3产率为考察指标,在单因素实验的基础上,利用响应面法对制备RS_3型籼米抗性淀粉的工艺参数进行了优化。结果表明,在淀粉乳质量分数10%、异淀粉酶酶解温度50℃、异淀粉酶酶解pH5.0、普鲁兰酶酶解温度60℃、普鲁兰酶酶解pH4.5、超声功率70 W条件下,最佳工艺条件为:异淀粉酶添加量16 U/g,异淀粉酶酶解时间3 h,普鲁兰酶添加量8 U/g,普鲁兰酶酶解时间2.2 h,超声时间7 min,超声间歇时间2.3 h。在最佳条件下,RS_3型籼米抗性淀粉产率可达18.19%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号