首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
5.
6.
Decapentaplegic (Dpp) plays an essential role in Drosophila development, and analyses of the Dpp signaling pathway have contributed greatly to understanding of the actions of the TGF-beta superfamily. Intracellular signaling of the TGF-beta superfamily is mediated by Smad proteins, which are now grouped into three classes. Two Smads have been identified in Drosophila. Mothers against dpp (Mad) is a pathway-specific Smad, whereas Daughters against dpp (Dad) is an inhibitory Smad genetically shown to antagonize Dpp signaling. Here we report the identification of a common mediator Smad in Drosophila, which is closely related to human Smad4. Mad forms a heteromeric complex with Drosophila Smad4 (Medea) upon phosphorylation by Thick veins (Tkv), a type I receptor for Dpp. Dad stably associates with Tkv and thereby inhibits Tkv-induced Mad phosphorylation. Dad also blocks hetero-oligomerization and nuclear translocation of Mad. We also show that Mad exists as a monomer in the absence of Tkv stimulation. Tkv induces homo-oligomerization of Mad, and Dad inhibits this step. Finally, we propose a model for Dpp signaling by Drosophila Smad proteins.  相似文献   

7.
8.
Patterning of the compound eye begins at the posterior edge of the eye imaginal disc and progresses anteriorly toward the disc margin. The advancing front of ommatidial differentiation is marked by the morphogenetic furrow (MF). Here we show by clonal analysis that Hedgehog (Hh), secreted from two distinct populations of cells has two distinct functions: It was well documented that Hh expression in the differentiating photoreceptor cells drives the morphogenetic furrow. Now we show that, in addition, Hh, secreted from cells at the posterior disc margin, is absolutely required for the initiation of patterning and predisposes ommatidial precursor cells to enter ommatidial assembly later. These two functions of Hh in eye patterning are similar to the biphasic requirement for Sonic Hh in patterning of the ventral neural tube in vertebrates. We show further that Hh induces ommatidial development in the absence of its secondary signals Wingless (Wg) and Dpp and that the primary function of Dpp in MF initiation is the repression of wg, which prevents ommatidial differentiation. Our results show that the regulatory relationships between Hh, Dpp, and Wg in the eye are similar to those found in other imaginal discs such as the leg disc despite obvious differences in their modes of development.  相似文献   

9.
10.
11.
Signals from transforming growth factor-beta (TGF-beta) ligands are transmitted within the cell by members of the Smad family, which can be grouped into three classes based on sequence similarities. Our previous identification of both class I and II Smads functioning in a single pathway in C. elegans, raised the issue of whether the requirement for Smads derived from different classes is a general feature of TGF-beta signaling. We report here the identification of a new Drosophila class II Smad, Medea, a close homolog of the human tumor-suppressor gene DPC4. Embryos from germline clones of both Medea and Mad (a class I Smad) are ventralized, as are embryos null for the TGF-beta-like ligand decapentaplegic (dpp). Loss of Medea also blocks dpp signaling during later development, suggesting that Medea, like Mad, is universally required for dpp signaling. Furthermore, we show that the necessity for these two closely related, non-redundant Smads, is due to their different signaling properties - upon activation of the Dpp pathway, Mad is required to actively translocate Medea into the nucleus. These results provide a paradigm for, and distinguish between, the requirement for class I and II Smads in Dpp/BMP signaling.  相似文献   

12.
13.
14.
Two classes of glial cells are found in the embryonic Drosophila CNS, midline glial cells and lateral glial cells. Midline glial development is triggered by EGF-receptor signalling, whereas lateral glial development is controlled by the gcm gene. Subsequent glial cell differentiation depends partly on the pointed gene. Here we describe a novel component required for all CNS glia development. The tramtrack gene encodes two zinc-finger proteins, one of which, ttkp69, is expressed in all non-neuronal CNS cells. We show that ttkp69 is downstream of gcm and can repress neuronal differentiation. Double mutant analysis and coexpression experiments indicate that glial cell differentiation may depend on a dual process, requiring the activation of glial differentiation by pointed and the concomitant repression of neuronal development by tramtrack.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号