首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Previous studies have shown that adenosine agonists may induce a rise in intraocular pressure (IOP), a reduction in IOP, or both. Although the reduction in IOP results from the activation of adenosine A1 receptors, the mechanisms responsible for the rise in IOP have not been investigated. This study examines the receptors and mechanisms responsible for the adenosine agonist-induced rise in IOP. METHODS: The ocular effects of the nonselective adenosine agonist NECA, the relatively selective adenosine A2 agonist CV-1808, the A2a agonist CGS-21680, and the A1 agonist R-PIA were evaluated. RESULTS: The topical administration of CV-1808 produced a rapid rise in IOP, with a maximum increase of 15.6 +/- 1.6 mm Hg. Dose-response curves demonstrated that each agonist produced a dose-related rise in IOP with the following rank order of potency: NECA > CV-1808 > > R-PIA = CGS-21680. At times corresponding to the rise in IOP, the administration of high doses of CV-1808 (165 micrograms) produced a significant increase in aqueous humor flow and protein concentration. Increases in IOP and aqueous humor protein levels induced by CV-1808 were blocked by pretreatment with the adenosine A2 antagonist DMPX. In vitro studies demonstrated that CV-1808 did not alter cyclic adenosine monophosphate production in the rabbit iris-ciliary body. In cats, topical administration of CV-1808 produced a rapid rise in IOP, with a maximum increase of 8.1 +/- 2.4 mm Hg and an ED50 of 73 +/- 2.9 micrograms. This rise in IOP was blocked by DMPX pretreatment. CONCLUSIONS: These data demonstrate that adenosine receptor agonists can induce an acute rise in IOP in rabbits and cats. On the basis of pharmacologic characteristics, the rise in IOP is consistent with the activation of ocular adenosine A2 receptors. Functional studies indicate that at high doses, this rise in IOP involves an increase in aqueous flow and the breakdown of the blood-aqueous barrier.  相似文献   

2.
Electrical field stimulation evoked a reproducible outflow of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) from the dorsal half of the rat spinal cord, an effect which was abolished by prior application of capsaicin, tetrodotoxin or removal of extracellular Ca2+. Adenosine (EC50 3.2 microM) and the selective adenosine A1 receptor agonist N6-cyclohexyladenosine (EC50 8.2 nM) inhibited evoked CGRP-LI outflow, while the selective adenosine A2 receptor agonist CGS-21680 was ineffective up to 10 microM. The action of adenosine was prevented by the adenosine A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (30 microM), which did not affect CGRP-LI release on its own.  相似文献   

3.
We examined the effects of adenosine receptor agonists and antagonists on the discharge of mesenteric afferent nerves supplying the jejunum in pentobarbitone sodium-anaesthetized rats. Adenosine (0.03-10 mg kg(-1), i.v.), NECA (0.3-300 microg kg(-1), i.v.) and the A1 receptor agonist, GR79236 (0.3-1000 microg kg(-1), i.v.), each induced dose-dependent increases in afferent nerve activity and intrajejunal pressure, hypotension and bradycardia. The A1 receptor antagonist, DPCPX (3 mg kg(-1), i.v.), antagonized all the effects of GR79236 but only the haemodynamic effects of adenosine and NECA. The A2A receptor antagonist, ZM241385 (3 mg kg(-1), i.v.), antagonized the hypotensive effect of NECA but none of the effects of GR79236. The A2A receptor agonist, CGS21680 (0.3-300 microg kg(-1), i.v.), and the A3 receptor agonist, IB-MECA (0.3-300 microg kg(-1), i.v.), each induced only a dose-dependent hypotension. Subsequent administration of adenosine (3 mg kg(-1), i.v.) induced increases in afferent nerve activity and intrajejunal pressure and bradycardia. ZM241385 (3 mg kg(-1), i.v.) antagonized the hypotensive effect of CGS21680 but not the effects of adenosine. Bethanechol (300 microg kg(-1), i.v.) evoked increases in afferent nerve activity and intrajejunal pressure, hypotension and bradycardia. However, adenosine (3 mg kg(-1), i.v.) evoked greater increases in afferent nerve activity than bethanechol despite inducing smaller increases in intrajejunal pressure. In summary, A1 and A2B and/or A2B-like receptors evoke adenosine-induced increases in mesenteric afferent nerve activity and intrajejunal pressure in the anaesthetized rat. Furthermore, elevations in intrajejunal pressure do not wholly account for adenosine-evoked excitation of mesenteric afferent nerves.  相似文献   

4.
Hypoxia or anemia is the fundamental stimulus for erythropoietin (EPO) production. Recent in vitro studies suggest that EPO secretion in response to hypoxia is regulated by adenosine in the kidney. In order to examine the in vivo effect of adenosine on EPO production, we determined the effects of adenosine receptor agonists and antagonists on serum EPO concentration in normal and anemic rats. In normal rats, intravenous injection of adenosine agonists (NECA, CHA and CGS-21680) dose-dependently stimulated EPO production. Pretreatment with KW-3902, an adenosine A1 antagonist with modest A2b antagonistic action, or KF17837, an adenosine A2a antagonist, inhibited the NECA (0.1 mg/kg, i.v.)-stimulated EPO production. Anemic hypoxia, induced by 2% (v/w body weight) blood withdrawal, increased serum EPO concentration from 38 +/- 2 to 352 +/- 76 mU/ml, with the increased serum adenosine concentration in the renal vein. KF17837 (0.1 mg/kg, i.v.), but not KW-3902 (0.1 mg/kg, i.v.), inhibited the anemic hypoxia-induced increase in EPO production. The present findings support the notion that adenosine mediates the EPO production in response to hypoxia in the kidney.  相似文献   

5.
Adenosine has receptor-mediated effects in a variety of cell types and is predominantly formed from ATP by a series of nucleotidase reactions. Adenosine formed intracellularly can be released by bidirectional nucleoside transport processes to activate cell surface receptors. We examined whether stimulation of adenosine receptors has a regulatory effect on transporter-mediated nucleoside release. DDT1 MF-2 smooth muscle cells, which possess nitrobenzylthioinosine-sensitive (ES) transporters as well as both adenosine A1 and A2 receptors, were loaded with the metabolically stable nucleoside analogue [3H]formycin B. N6-cyclohexyladenosine (CHA), a selective adenosine A1 receptor agonist, produced a concentration-dependent inhibition of [3H]formycin B release with an IC50 value of 2.7 microM. Further investigation revealed CHA interacts directly with nucleoside transporters with a Ki value of 3.3 microM. Neither 5'-N-ethylcarboxamidoadenosine (NECA), a mixed adenosine A1 and A2 receptor agonist, nor CGS 21680, a selective adenosine A2A receptor agonist, affected nucleoside release. We conclude that release of the nucleoside formycin B from DDT1 MF-2 cells is not regulated by adenosine A1 or A2 receptor activation.  相似文献   

6.
We investigated the regulation of COX-2 expression and activity by adenosine receptors in rat microglial cells. The selective adenosine A2a-receptor agonist CGS21680 and the non-selective adenosine A1- and A2-receptor agonist 5'-N-ethylcarboxiamidoadenosine (NECA) induced an increase in COX-2 mRNA levels and the synthesis of prostaglandin E2 (PGE2). The adenosine A1-receptor agonist cyclopentyladenosine (CPA) was less potent, and the adenosine A1-receptor-specific agonist N6-2-(-aminophenylo)ethyladenosine (APNEA) showed only marginal effects. Microglia expressed adenosine A1-, A2a-, and A3-, but not A2b-receptor mRNAs, whereas astroglial cells expressed adenosine A2b- but not A2a-receptor mRNA. The adenosine A2a-receptor selective antagonist (E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837) inhibited both CGS21680-induced COX-2 expression and PGE2 release. CGS21680-increased PGE2 levels were inhibited by dexamethasone, by the nonsteroidal antiinflammatory drug meloxicam, and by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine (SQ22536). CGS21680 and NECA both increased intracellular cAMP levels in microglial cells. Dibutyryl cAMP as well as forskolin induced the release of PGE2. The results strongly suggest that adenosine A2a-receptor-induced intracellular signaling events cause an up-regulation of the COX-2 gene and the release of PGE2. Apparently, the cAMP second messenger system plays a crucial role in COX-2 gene regulation in rat microglial cells. The results are discussed with respect to neurodegenerative disorders of the CNS such as Alzheimer's disease, in which activated microglia are critically involved and COX inhibitors may be of therapeutic benefit.  相似文献   

7.
In membrane preparations from rat striatum, where adenosine A2A and dopamine D2 receptors are coexpressed, stimulation of adenosine A2A receptors was found to decrease the affinity of dopamine D2 receptors for dopamine agonists. We now demonstrate the existence of this antagonistic interaction in a fibroblast cell line (Ltk-) stably transfected with the human dopamine D2 (long-form) receptor and the dog adenosine A2A receptor cDNAs (A2A-D2 cells). In A2A-D2 cells, but not in control cells only containing dopamine D2 receptors (D2 cells), the selective adenosine A2A agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamido adenosine (CGS 21680) induced a 2-3-fold decrease in the affinity of dopamine D2 receptors for dopamine, as shown in competition experiments with dopamine versus the selective dopamine D2 antagonist [3H]raclopride. By contrast, activation of the constitutively expressed adenosine A2B receptors with 5'-N-ethyl-carboxamidoadenosine (NECA) did not modify dopamine D2 receptor binding. In A2A-D2 cells CGS 21680 failed to induce or induced only a small increase in adenosine-3',5'-cyclic-monophosphate (cAMP) accumulation. In D2 cells NECA- or forskolin-induced adenylyl cyclase activation was not associated with any change in dopamine D2 receptor binding. These results indicate that adenylyl cyclase activation is not involved in the adenosine A2A receptor-mediated modulation of the binding characteristics of the dopamine D2 (long-form) receptor.  相似文献   

8.
1. The receptors mediating the vasodilator responses to adenosine in the isolated mesenteric arterial bed of the rat were identified by use of selective agonists and antagonists and the involvement of the endothelium was examined. 2. Adenosine-mediated dilatation of the mesentery was potentiated by the nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM), but in contrast, removal of the endothelium substantially reduced the responses to adenosine. 3. The order of potency of adenosine receptor agonists was: 5'-N-ethylcarboxamidoadenosine (NECA) > 2-p-(-2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) > 2-chloro-N6-cyclopentyl-adenosine (CCPA) > or = adenosine, suggesting the presence of A2A receptors. 4. Adenosine-mediated dilatation was inhibited by the non-selective adenosine receptor antagonist, 8-phenyltheophylline (3 microM) and by the A2A receptor antagonist 8-(3-chlorostyryl)caffeine (500 nM), but was unaffected by the A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 10 nM). 5. Reducing the pH of the perfusate to 6.8 potentiated the actions of both CGS 21680 and adenosine, but the vasodilator effects of carbachol were the same at both pH values. The adenosine response at the lower pH as at pH 7.4, was unaffected by DPCPX. The actions of the nitrovasodilator, sodium nitroprusside, were also potentiated at pH 6.8 relative to those at the higher pH value but smaller responses were obtained at the lower pH value with forskolin, a stimulator of adenylyl cyclase, than at pH 7.4. 6. It is concluded that the adenosine receptor mediating dilatation of the rat mesenteric arterial bed is of the A2A subtype, that the response, under the conditions used, is apparently partly dependent on the endothelium (but not due to the release of nitric oxide), and that the response to activation of this receptor is potentiated by a reduction in pH which is similar to that seen in ischaemic conditions.  相似文献   

9.
Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70-80%), NMDA-induced inward currents were inhibited by the adenosine A2A receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the A2A receptor selective antagonist 8-(3-chlorostyryl)caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP-beta-S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14-24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, A2A receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.  相似文献   

10.
The influence of adenosine and selective A1 and A2 agonists and antagonists was investigated on the cholinergic and the excitatory non-cholinergic (e-NC) contractions induced by electrical field stimulation in the guinea-pig bronchi. Adenosine (10 nM-1 mM) induced a concentration-dependent inhibition of the e-NC contraction (EC50 = 90 +/- 14 microM), whereas the cholinergic peak was only slightly affected. Preincubation of the tissue with the adenosine uptake blocker dipyridamole (10 microM) significantly shifted the concentration-inhibition curve to adenosine to the left (EC50 = 10 +/- 1 microM), suggesting an interaction with extracellular adenosine receptors of A1 and/or A2 subtype. To characterize the receptor type involved in this effect, selective adenosine derivatives were studied. The agonist to both A1 and A2 adenosine receptors, 5'-N-ethylcarboxamidoadenosine (NECA) was more potent than the selective A1 agonist, (-)-R-6-phenylisopropyladenosine (R-PIA), in inhibiting the e-NC contraction (EC50 = 0.10 +/- 0.04 and 0.60 +/- 0.12 microM, respectively, with a maximal inhibition of 70 and 45%, respectively). The concentration-response curve to NECA was shifted to the right by the A2 receptor selective antagonist 3,7-dimethyl-1-propargylxanthine (DMPX) (10 microM) (EC50 = 1.4 +/- 0.5 microM) as well as by the specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (10 microM) (EC50 = 0.7 +/- 0.3 microM). The inhibitory effect induced by the association of both antagonists, DPCPX and DMPX, was considerably potentiated (EC50 > 22 +/- 2.5 microM). The effect of R-PIA was also shifted to the right by DPCPX (EC50 = 8.2 +/- 1.6 microM) but was not modified by DMPX. The contractile response to exogenous substance P was unaffected by NECA pretreatment (0.3 microM). Altogether, these results suggest that adenosine-induced inhibition of e-NC contraction of guinea-pig bronchi is mediated through activation of both A1 and A2 adenosine receptors linked to inhibition of the release of neuropeptides from C-fibre nerve endings.  相似文献   

11.
The effects of intrathecally delivered adenosine agonists on allodynia induced by L5/L6 spinal nerve ligation in rats with lumbar intrathecal catheters were examined. Tactile allodynia was assessed by measuring the threshold for evoking withdrawal of the lesioned hind paw with calibrated von Frey hairs. Intrathecal administration of the A1 adenosine selective agonist, N6-(2-phenylisopropyl)-adenosine R-(-)isomer (R-PIA), produced a dose-dependent (0.3-3 nmol; ED50 = 0.6 nmol) antiallodynic action and evoked a delayed motor weakness at a dosage of 30 nmol. Intrathecal administration of the A2 adenosine selective agonist, CGS 21680 {2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride}, also produced a dose-dependent reduction in allodynia (2-40 nmol; ED50 = 15 nmol), but this effect was associated at 40 nmol after a short interval with prominent hind limb weakness. Intrathecal pretreatment with A1/A2 adenosine antagonists, caffeine (20 mumol) and 8-sulfophenyltheophylline (60 nmol), blocked antiallodynic actions of R-PIA (1 nmol) and CGS 21680 (40 nmol). Intrathecal pretreatment with the A1 adenosine-selective antagonist, 8-cyclopentyl-1,3-dimethylxanthine (3 nmol), blocked the antiallodynic effect of R-PIA (1 nmol), but even a dose as high as 10 nmol did not block the effect of CGS 21680 (40 nmol). The A2 adenosine-selective antagonist, 3, 7-dimethyl-1-propargylxanthine (3 nmol), prevented the antiallodynic effects of R-PIA (1 nmol) and CGS 21680 (40 nmol). Pretreatment with caffeine (20 mumol), 8-sulfophenyltheophylline (60 nmol) and 3,7-dimethyl-1-propargylxanthine (3 nmol) prevented the motor dysfunction induced by R-PIA (30 nmol) and CGS 21680 (40 nmol), but 8-cyclopentyl-1,3-dimethylxanthine (3 or 10 nmol) did not. Based on these effects, we hypothesize that the antiallodynic effects are mediated through the activation of spinal A1 adenosine receptors and motor dysfunction effects are mediated through A2 adenosine receptors.  相似文献   

12.
Studies were undertaken in the rat isolated renal artery in order to determine if adenosine receptor agonists were capable of inducing the release of nitric oxide from the renovascular endothelium. N6-cyclopentyladenosine (CPA) and 5'-N-ethylcarboxamidoadenosine (NECA) produced concentration-dependent relaxations in endothelium intact renal artery rings. The NECA curve was biphasic with a first phase pA50 of 6.05. The CPA curve was monophasic with a pA50 of 4.35. In the absence of endothelium the curves to both NECA and CPA were monophasic with pA50 values of 3.37 and 3.50, respectively. The A2a adenosine receptor-selective agonist CGS21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenos ine) was inactive in endothelium intact tissues. Relaxant responses to CPA and NECA in the presence of endothelium were antagonized by 8-p-sulfophenyltheophylline and by 1,3-dipropyl-8-cyclopentylxanthine only at a nonselective concentration (3 x 10(-6) M) suggesting activation of A2 adenosine receptors. The responses to CPA and NECA in the absence of endothelium are not due to activation of A1 or A2 adenosine receptor subtypes because they are resistant to blockade by these xanthines. CPA and NECA responses in the presence of endothelium were inhibited by NG-nitro-L-arginine methylester (L-NAME), a nitric oxide synthase inhibitor, but not by the cyclooxygenase inhibitor indomethacin or the K+ATP channel antagonist glibenclamide. These results suggest that the rat renal artery contains A2b adenosine receptors that are located exclusively on the endothelium and cause the release of nitric oxide.  相似文献   

13.
In isolated guinea pig pulmonary arteries (precontracted with 1 microM noradrenaline) N6-cyclopentyladenosine (CPA), a selective A1 adenosine receptor agonist, exerted a concentration-dependent contraction, whereas 5'-N-ethylcarboxamidoadenosine (NECA), a non-selective A1/A2 receptor agonist, in the presence of DPCPX (a highly selective A1 receptor antagonist), produced a concentration-related rapid relaxation. Pulmonary arteries obtained from guinea pigs treated with aminophylline (APH) or 8-phenyltheophylline (8-PT) for 10 consecutive days, displayed more pronounced contraction in response to CPA compared to those of solvent-treated animals. Relaxant action of NECA was, however, attenuated in arteries prepared from methylxanthine-treated guinea pigs. Opposite changes were found in vascular tissues excised from chronically dipyridamole(DP)-treated guinea pigs.  相似文献   

14.
We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors (N6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors (Ki values of 1.2 nM versus 0.8 microM). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 nM, binds only to the dopamine-rich regions of the rat brain, with a K(D) value of 1.4 (0.8-1.8) nM. The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 nM, the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H] SCH 58261 with the following estimated Ki values (nM): 2-hex-1-ynyl-5'-N-ethylcarboxamidoadenosine, 3.9 (1.8-8.4); CGS 21680, 130 (42-405); N6-cyclohexyladenosine, 9,985 (3,169-31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 microM) or Mg2+ (10 mM). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

15.
1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM). 2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50+/-s.e.mean values 6.15+/-0.24, 5.99+/-0.26 and 5.51+/-0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM). 3. In the epididymal half of the vas deferens NECA potentiated (at < or = 100 nM) and inhibited (at > or = 1 microM) electrically-evoked contractions. In the presence of the non-selective alpha-adrenoceptor antagonist phentolamine (3 microM), the alpha1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05+/-0.25, 5.97+/-0.29 and 5.71 +/-0.27, respectively). CPA (at 10 microM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14+/-0.67); this effect was antagonized by DPCPX (30 nM, apparent pK(B) 8.26+/-0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 microM), CPA (up to 1 microM) potentiated electrically-evoked contractions. 4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49+/-0.62, 7.65+/-0.74 and 5.84+/-0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pK(B) value of 7.64+/-0.64. 5. The alpha1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 microM) potentiated responses to phenylephrine (< or = 1 microM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 microM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 microM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57+/-0.54 and 8.08+/-0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis. 6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of alpha1-adrenoceptor-, but not of ATP-induced contractility.  相似文献   

16.
1. The aim of this study was to characterize adenosine receptors located in the nucleus tractus solitarius (NTS) that mediate decreases in blood pressure in the anaesthetized rat. To determine the adenosine receptor subtype involved, a range of selective agonists and antagonists were studied and their relative potencies evaluated. 2. The rank order of agonist potency in inducing decreases in diastolic blood pressure was N6-cyclopentyladenosine (CPA) > N6-cyclohexyladenosine (CHA) > N-ethyl-carboxamidoadenosine (NECA) > or = 2-phenylaminoadenosine (CV1808) > 2-p-(carboxyethyl)phenethylamino-5' N-ethylcarboxamidoadenosine (CGS 21680) > N6-(2-(4-aminophenyl)ethyl)-adenosine (APNEA). 3. The hypotensive action of CPA following microinjection into the NTS was antagonized by i.v. infusions (50 micrograms kg-1 min-1) of adenosine receptor antagonists, 8-cyclopentyl-1,3 dipropylxanthine (DPCPX), 8-phenyltheophylline (8-PT), 8-(p-sulphophenyl)theophylline (8-SPT), and 1,3-dipropyl-8-N-(2-diethylamino)ethyl)-N methyl-4-(2,3,6,7-tetrahydro-2,6-dioxo) benzenesulphonamidexanthine (PD 115199). The antagonist potency order was DPCPX > PD115199 > or = 8-PT. Intravenous infusion of 8-SPT had no effect on blood pressure responses to microinjection of CPA into the NTS. 4. The results suggest that adenosine A1 receptors in the NTS mediate hypotensive responses in the anaesthetized rat preparation.  相似文献   

17.
The vasodilatory effects of the adenosine analogs, 5'-N-ethylcarboxamidoadenosine (NECA), 2-[p-(2-carboxyethyl)phenethyl amino]-5'-N-ethylcarboxamidoadenosine (CGS 21680) and 2-[(2-cyclohexylethyl)amino]adenosine (CGS 22492) in human coronary, internal mammary artery and saphenous vein were examined in vitro. All produced concentration-dependent relaxations in arterial as well as venous rings contracted with 35 mM KCl. The concentration-response curves for NECA and CGS 21680 were parallel in the coronary. The adenosine A2 receptor antagonist, 9-chloro-2-(2-furyl)[1,2,4]triazolo[1,5-c]quinazolin-5-amine (CGS 15943A) significantly attenuated the relaxing response to the adenosine analogs in coronary artery. Although NECA and CGS 22492 were equally as effective at the highest concentration administered (both achieving approximately 70% relaxation at 10(-4) M) NECA (EC50 = 1.25 +/- 0.11 microM) induced greater vasodilation at lower concentrations than CGS 22492 (EC50 = 11.27 +/- 1.53 microM). CGS 21680 was the least potent of the agents tested achieving only 44% relaxation at 10(-4) M (EC50 = 4.71 +/- 0.46 microM). Coronary artery appeared to be more responsive than internal mammary artery or saphenous vein which displayed only marginal relaxation to these agents.  相似文献   

18.
In the present study, we investigated the role of disulfide bridges and sulfhydryl groups in A2a adenosine receptor binding of the agonist 2-p-(2-carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadenosi ne (CGS 21680). To evaluate the presence of essential disulfide bridges, rat striatal membranes were incubated with [3H]CGS 21680 in the presence of dithiothreitol and binding of the agonist to membranes was measured. The amount of [3H]CGS 21680 which specifically bound, decreased progressively upon pretreatment of membranes with increasing concentrations of dithiothreitol. Pretreatment of rat striatal membranes with 12.5 mM dithiothreitol for 15 min at 25 degrees C resulted in a 2-fold decrease of A2a adenosine receptor affinity for [3H]CGS 21680, and a reduction in the maximal number of binding sites. The presence of agonist or antagonist ligands protected the A2a adenosine receptor sites from the effect of dithiothreitol. We also examined the susceptibility of A2a adenosine receptors to inactivation by the sulfhydryl alkylating reagent, N-ethylmaleimide. When rat striatal membranes were pretreated with N-ethylmaleimide for 30 minutes at 37 degrees C, a decrease in specific [3H]CGS 21680 binding was observed. Pretreatment of membranes with 1 mM N-ethylmaleimide also resulted in a 2-fold reduction of A2a adenosine receptor affinity for [3H]CGS 21680, as well as a slight decrease in the maximal number of binding sites. Neither agonist nor antagonist ligands were effective in protecting the receptor sites from inactivation by N-ethylmaleimide. In contrast, addition of 100 microM guanosine-5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate were both effective in protecting the receptor sites from inactivation by N-ethylmaleimide. This protective effect was significant but not complete. Our data suggest that disulfide bridges play a role in the structural integrity of the A2a adenosine receptor, furthermore, reduced sulfhydryl groups appear to be important but we do not yet know if they are on the receptor or on the Gs alpha subunit.  相似文献   

19.
1. The presence of A2 receptors mediating relaxation in the rat isolated aorta has been previously demonstrated. However, agonist dependency of the degree of rightward shift elicited by 8-sulphophenyltheophylline (8-SPT) led to the suggestion that the population of receptors in this tissue is not a homogeneous one. In this study we have re-examined the effects of 8-SPT in the absence and presence of the NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and investigated antagonism of responses by the potent A2a receptor ligands PD 115,199 (N-[2-dimethylamino)ethyl]-N-methyl-4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3 dipropyl-1H-purin-8-yl)) benzene sulphonamidexanthine), ZM 241385 (4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-yl amino]ethyl)phenol), and CGS 21680 (2-[p-(2-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine). We have also investigated the antagonist effects of BWA1433 (1,3-dipropyl-8-(4-acrylate)phenylxanthine) which has been shown to have affinity at rat A3 receptors. 2. Adenosine, R-PIA (N6-R-phenylisopropyl adenosine), CPA (N6-cyclopentyladenosine) and NECA (5'-N-ethylcarboxamidoadenosine) all elicited relaxant responses in the phenylephrine pre-contracted rat isolated aorta with the following potency order (p[A50] values in parentheses): NECA (7.07 +/- 0.11) > R-PIA (5.65 +/- 0.10) > CPA (5.05 +/- 0.12) > adenosine (4.44 +/- 0.12). 3. 8-SPT (10-100 microM) caused parallel rightward shifts of the E/[A] curves to NECA (pKB = 5.23 +/- 0.16). A smaller rightward shift of E/[A] curves to CPA was observed (pA2 = 4.85 +/- 0.17). However, no significant shifts of E/[A] curves to either adenosine or R-PIA were observed. 4. In the absence of endothelium E/[A] curves to NECA and CPA were right-shifted compared to controls. However, removal of the endothelium did not produce a substantial shift of adenosine E/[A] curves, and E/[A] curves to R-PIA were unaffected by removal of the endothelium. 5. In the presence of L-NAME (100 microM) E/[A] curves to NECA and CPA were right-shifted. However, no further shift of the CPA E/[A] curve was obtained when 8-SPT (50 microM) was administered concomitantly. The locations of curves to R-PIA and adenosine were unaffected by L-NAME (100 microM). 6. In the presence of PD 115,199 (0.1 microM) a parallel rightward shift of NECA E/[A] curves was observed (pA2 = 7.50 +/- 0.19). PD 115,199 (0.1 and 1 microM) gave smaller rightward shifts of E/[A] curves to R-PIA and CPA, but E/[A] curves to adenosine were not significantly shifted in the presence of PD 115,199 (0.1 or 1 microM). 7. The presence of ZM 241385 (3 nM-0.3 microM) caused parallel rightwad shifts of NECA E/[A] curves (pKB = 8.73 +/- 0.11). No significant shifts of E/[A] curves to adenosine, CPA or R-PIA were observed in the presence of 0.1 microM ZM 241385. 8. CGS 21680 (1 microM) elicited a relaxant response equivalent to approximately 40% of the NECA maximum response. In the presence of this concentration of CGS 21680, E/[A] curves to NECA were right-shifted in excess of 2-log units, whereas E/[A] curves to R-PIA were not significantly shifted. 9. BWA1433 (100 microM) caused a small but significant right-shift of the E/[A] curve to R-PIA yielding a pA2 estimate of 4.1 IB-MECA (N6-(3-iodo-benzyl)adenosine-5(1)-N-methyl uronamide) elicited relaxant responses which were resistant to blockade by 8-SPT (p[A]50 = 5.26 +/- 0.13). 10. The results suggest that whereas relaxations to NECA (10 nM-1 microM) are mediated via adenosine A2a receptors, which are located at least in part on the endothelium, R-PIA and CPA may activate A2b receptors on the endothelium and an additional, as yet undefined site, which is likely to be located on the smooth muscle and which is not susceptible to blockade by 8-SPT, PD 115,199 or ZM 241385. This site is unlikely to be an A3 receptor since the very small shift obtained in the presence of BWA1433 (100 microM), and the low potency of IB-MECA is not consistent with the affin  相似文献   

20.
Hydrogen peroxide (H2O2) produces complex cardiac effects that may involve altered calcium homeostasis. The cardiotoxic effects of H2O2 can be attenuated by adenosine A1 receptor agonists. The present study examined the effect of H2O2 on L-type Ca++ current (ICa,L) in guinea pig ventricular myocytes under two different recording conditions and the influence of adenosine receptor agonists. H2O2 (100 microM), did not have any significant effect on ICa,L, under conventional whole cell patch configuration. However, when recorded under nystatin perforated patch configuration, H2O2 caused a gradual and significant increase (84 +/- 14%) in ICa,L compared to control values. N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, significantly attenuated the effect of H2O2. The inhibitory effect of N6-cyclopentyladenosine was antagonized by 8cyclopentyl-1, 3-dipropylxanthine, an adenosine A1 receptor antagonist. The A2A and A3 receptor agonists, 2-p-(2-Carboxyethyl)phenethylamino-5'- N - ethylcarboxamidoadenosine (CGS-21680) and 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-be ta-D-ribofuranuronamide, respectively, did not modulate the enhancement of ICa,L by H2O2. Moreover the effects of N6-cyclopentyladenosine were mimicked by the protein kinase C inhibitor bisindolylmaleimide. Thus, our results demonstrate a potent stimulatory effect of H2O2 on ICa,L in guinea pig ventricular myocytes. We further demonstrate that adenosine A1 receptor activation attenuates this effect. Our results suggest a potential basis for altered calcium homeostasis in response to H2O2 as well as the salutary effects of A1 receptor activation against H2O2-induced cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号