共查询到19条相似文献,搜索用时 62 毫秒
1.
贝氏体区热处理对马氏体基体冷轧TRIP钢组织与性能的影响 总被引:2,自引:0,他引:2
对低碳硅锰试验钢进行水淬和随后的两相区退火与贝氏体区等温处理。利用光镜对热处理后的显微组织进行观察分析,通过拉伸试验测试了热处理后的力学性能,并采用X-ray衍射分析方法检测了拉伸前后残余奥氏体含量的变化。结果表明,热处理后的显微组织是铁素体、贝氏体与残余奥氏体的复合组织,随着贝氏体区等温温度的提高和等温时间的延长,残余奥氏体的体积百分数存在一极大值,在400℃等温5min时残余奥氏体的相对含量最多,此时具有最大的强度、塑性和强塑积。 相似文献
2.
《塑性工程学报》2016,(6):216-220
采用场发扫描电镜和X射线衍射仪研究了IQP工艺中合金元素配分后不同碳配分时间对0.12C-1.33Mn-0.55Cu钢组织演变、力学性能和残余奥氏体含量的影响。结果表明:实验用钢经双相区保温后,合金元素Cu、Mn有明显的配分效果;与QP处理相比,IQP处理钢抗拉强度虽略有下降,但强塑积提高了6 517MPa·%;在双相区Cu、Mn元素配分后,随着碳配分时间的不断增加,马氏体板条缠结减少且逐渐变的条理清晰,随后出现回火马氏体,并有渗碳体的析出,钢的抗拉强度逐渐减小,伸长率则先增大而后减小,配分时间到90s时,强塑积达到最大为25 861MPa·%;在不同的配分时间下,钢的伸长率变化趋势与残余奥氏体含量的变化趋势基本一致。 相似文献
3.
在传统C-Mn-Si钢的基础上,采用在线热处理,并通过光学显微镜、扫描电镜、拉伸试验等对一步淬火配分处理后试验钢的微观组织及力学性能进行了研究,且讨论了配分时间对材料组织性能的影响。结果表明:试验钢组织由板条马氏体和残留奥氏体组成,随着配分时间的增加,也有少量贝氏体生成,残留奥氏体含量先上升后下降,马氏体的板条组织逐渐模糊并软化;抗拉强度和屈服强度都逐渐降低,伸长率先升高后降低。配分30 s时综合性能最佳,抗拉强度为989 MPa,伸长率为23.5%,强塑积达到23.24 GPa·%。 相似文献
4.
采用光学显微镜、场发扫描电镜和X射线衍射仪研究了配分温度对低碳高强QP钢的组织演变规律,并分析了配分温度对其力学性能和残留奥氏体含量的影响。结果表明:实验用钢0.20C-1.28Mn-0.37Si经过QP处理后,随着配分温度的升高,其抗拉强度逐渐降低,伸长率先升高后降低,在配分温度400℃时,强塑积达到最大22610 MPa·%;随配分温度的升高,析出的碳化物开始聚集长大,并消耗了马氏体中扩散的碳,使残留奥氏体的含量降低,残留奥氏体含量在400℃时达到最大的体积分数5.3%,试样拉伸断口形貌具有典型的韧窝状特征。 相似文献
5.
基于汽车轻量化原则,应用超快冷和一步法配分工艺可得到高强塑积的热轧Q&P钢,借助OM、SEM、TEM、XRD和室温拉伸等实验手段,研究配分温度对试验钢组织性能的影响规律。研究表明:随着配分温度的增加,组织中的马氏体板条束细化,残余奥氏体含量增加,其抗拉强度和屈服强度减小,伸长率和强塑积增加,屈强比减小,n值增加。400℃配分的试验钢,残余奥氏体含量最多为12.7%,其抗拉强度为1012 MPa,伸长率为23.5%,屈强比最低为0.62,n值最高为0.15,强塑积最高为23.78 GPa·%,其综合力学性能最好。 相似文献
6.
研究了两相区不同退火温度及不同配分温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状和块状残留奥氏体;随退火温度的升高,实验钢抗拉强度和屈服强度呈上升趋势,伸长率呈下降趋势,残留奥氏体含量先上升后下降;随配分温度的升高,实验钢抗拉强度呈下降趋势,屈服强度、伸长率和残留奥氏体含量呈上升趋势;经Q&P工艺处理后的实验钢强塑积可达28215 MPa·%。 相似文献
7.
对C-Si-Mn冷轧低碳钢进行了淬火与配分(Q&P)处理.利用热膨胀仪、光学显微镜、扫描电镜、电子万能试验机、X射线衍射等实验手段,研究了实验钢奥氏体化温度和奥氏体化保温时间对相变组织的影响,并探讨了显微组织和力学性能随Q&P工艺中配分温度和配分时间等工艺参数的变化规律.结果表明,Q&P配分温度和配分时间强烈影响最终残留奥氏体含量.本实验中最佳配分工艺下,残留奥氏体量(体积分数)可以达到10%以上,从而使试验钢具有良好的强塑积.其伸长率约15.5%,抗拉强度为1352 MPa,强塑积可达到21000 MPa·%以上. 相似文献
8.
采用盐浴对两种硅含量不同的试验钢进行了淬火配分处理,并用金相显微镜、扫描电镜与拉伸试验机对不同淬火温度下试验钢组织及性能的转变规律展开了研究。结果表明,试验钢的显微组织由铁素体、马氏体、残留奥氏体与贝氏体组成;硅含量增加,有利于试验钢中残留奥氏体体积分数提高,抗拉强度和屈服强度显著提高,伸长率降低,强度随淬火温度变化的幅度减小;经260 ℃淬火、360 ℃配分后,2.13%(质量分数)Si钢在拥有高强度的同时保持了较好的伸长率,其抗拉强度为958.66 MPa,屈服强度为458.99 MPa,伸长率为15.35%,强塑积为14.66 GPa·%,综合力学性能最佳。 相似文献
9.
设计了新的Q&P钢成分0.2C-1.6Si-3.5Mn,研究了提高锰含量之后Q&P钢的组织及性能.对这一成分的冷轧薄板进行了Q&P工艺热处理,测定了不同配分时间下的力学性能和残余奥氏体体积分数,并通过SEM和TEM观察了显微组织.结果表明,Q&P钢的抗拉强度达到1366~1476 MPa,伸长率为11.1%~15.8%.显微组织主要为高位错密度的板条状马氏体和分布其间的薄膜状残余奥氏体,配分时间过长会有一些碳化物析出.随配分时间的延长,残余奥氏体的体积分数逐渐增加,其中的碳含量也增多. 相似文献
10.
采用以Mn配分珠光体为初始组织的快速淬火-配分工艺,研究了淬火温度对非均质淬火-配分钢的微观组织和力学性能的影响规律。结果表明,当高温奥氏体继承了珠光体中富Mn渗碳体和贫Mn铁素体中的Mn分布时,可在淬火后获得由富Mn片状残留奥氏体与贫Mn马氏体板条构成的鬼珠光体区域。随淬火温度的升高,高温奥氏体向马氏体转变的驱动力降低,导致鬼珠光体区域减少,块状残留奥氏体数量增多、且尺寸增大。由于鬼珠光体区域减少,马氏体板条的细晶强化效果减弱,造成屈服强度降低;块状残留奥氏体的增加,提供了更强烈的TRIP效应,同时改善了抗拉强度和均匀延伸率,但块状残留奥氏体形成的脆性马氏体降低了颈缩后的延伸率。由此可见,通过调控淬火温度,能够在保证高抗拉强度(约1600 MPa)和高断裂总延伸率(约20%)的基础上,实现对屈服强度和均匀延伸率的进一步调控。 相似文献
11.
12.
13.
对低碳钢进行淬火和碳再分配处理(简称Q&P处理),利用扫描电子显微镜、透射电子显微镜和常温拉伸实验机等测试手段研究Q&P处理后低碳钢的组织与性能特点。结果表明,经Q&P处理后,低碳钢中的残余奥氏体组织有小颗粒状、薄膜状及大块状等形态结构。其抗拉强度随配分时间的延长而逐渐降低,强塑积和伸长率则随着配分时间的延长而逐渐增加。 相似文献
14.
In order to investigate the effect of microstructural characterization on the mechanical properties and retained austenite stability, a different type of quenching and partitioning steel(I-QP) through intercritical annealing before the quenching and partitioning process was designed, which can realize lamellar intercritical microstructure compared to the conventional quenching and partitioning(QP) process. The morphology of ferrite and martensite/retained austenite is lamellar in the I-QP steel while it is equiaxed after being heat-treated by conventional QP process. The I-QP steel is proved to have better formability and mechanical properties than conventional QP steel, which is due to the highervolume fraction of retained austenite in the I-QP steel and confirmed by electron backscattering diffraction patterns and X-ray diffraction. Furthermore, the stability of retained austenite in I-QP steel is also higher than that in conventional QP steel, which is investigated by tensile tests and differential scanning calorimetry. 相似文献
15.
采用环境扫描电镜观察超高强度不锈钢的断口形貌,用万能实验机测试了不同回火温度的超高强不锈钢的力学性能,研究了超高强度不锈钢不同回火温度下的力学性能和微观组织。研究结果表明:540℃、4 h回火后该种超高强度不锈钢合金具有最佳综合力学性能,抗拉强度达1 902 MPa,屈服强度为1 395 MPa,延伸率和断面收缩率分别为14%和67.8%,冲击韧度为130 J/cm2。此回火温度下该超高强度不锈钢为回火马氏体组织,马氏体逆转变而生成的逆转变奥氏体含量在5%左右,使其具有良好的强韧性。 相似文献
16.
对CT80连续油管用钢进行不同温度回火热处理,研究了回火温度对其显微组织与力学性能的影响.结果表明:不同回火温度下实验钢的显微组织主要为铁素体、回火索氏体和残留奥氏体;随回火温度的升高,显微组织中带状组织越明显,实验钢的屈服强度和抗拉强度呈下降趋势,延伸率逐渐升高,屈强比明显增加. 相似文献
17.
18.
Effect of Austenitizing Temperature on Microstructure and Mechanical Properties of Semi-High-Speed Steel Cold-Forged Rolls 总被引:1,自引:0,他引:1
Qiong Wu Da-le Sun Chang-sheng Liu 《Journal of Materials Engineering and Performance》2009,18(7):952-958
The effect of austenitizing temperature on the microstructure and mechanical properties of semi-high-speed steel (S-HSS) cold-forged
rolls was investigated. Low-temperature austenitizing below 1313 K induced carbide coarsening during subsequent tempering
at 973 K due to the nucleation effect of undissolved M7C3. On the other hand, the heavy dissolution of M7C3 above 1353 K caused the fine carbide formation on lath and plate boundaries, which retarded the subgrain growth during tempering.
The increase in strength with increasing austenitizing temperature was attributed to the fine carbide distribution and the
high dislocation density. Furthermore, as the austenitizing temperature increased, the impact energy markedly reduced, due
to the large prior austenite grain size and the high strength. Finally, based on the microstructure and mechanical properties,
an optimal austenitizing temperature range between 1313 and 1333 K was determined. 相似文献