首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
利用Gleeble-1500数控动态力学模拟试验机,对Cu-1.56Ni-0.65Si-1.12Co-0.05Zr合金进行热压缩试验,应变速率0.002~ 10 s-1,变形温度为600~900℃,总变形量为50%.结果 表明:在热压缩过程中,Cu-1.56Ni-0.65Si-1.12Co-0.05Zr合金的流变应力随着变形温度的降低和应变速率的增加而升高,应力在达到峰值之后不再发生明显变化,高温、低应变速率的变形条件更有利于合金的动态再结晶.显微组织观察表明合金的动态再结晶机制为连续动态再结晶和不连续动态再结晶共同作用,析出相主要钉扎在位错和晶界处,能够阻碍位错的运动从而增强基体.  相似文献   

2.
本文采用Gleeble-1500B热模拟试验机研究了铸造 Mg-2.5Nd-1.0Zn-0.5Zr稀土镁合金在变形温度为200~400℃、应变速率为0.001~0.1 s?1,变形程度为30%条件下的高温压缩变形行为,分析了实验合金在高温变形过程中应力与应变速率和变形温度之间的关系。结果表明,Mg-2.5Nd-1.0Zn-0.5Zr镁合金热变形时,变形温度和应变速率是影响合金热变形性能的重要因素。应变速率越低,温度越高时更容易发生再结晶。提高变形温度和变形量、降低应变速率,均使动态再结晶程度增加,晶粒尺寸加大。  相似文献   

3.
本文采用Gleeble-1500B热模拟试验机研究了铸造Mg-2.5Nd-1.0Zn-0.5Zr稀土镁合金在变形温度为200~400℃、应变速率为0.001~0.1 s~(-1),变形程度为30%条件下的高温压缩变形行为,分析了实验合金在高温变形过程中应力与应变速率和变形温度之间的关系。结果表明,Mg-2.5Nd-1.0Zn-0.5Zr镁合金热变形时,变形温度和应变速率是影响合金热变形性能的重要因素。应变速率越低,温度越高时更容易发生再结晶。提高变形温度和变形量、降低应变速率,均使动态再结晶程度增加,晶粒尺寸加大。  相似文献   

4.
采用GLEEBLE-1500热模拟机对Mg-10Gd-2Y-O.6Zr合金在温度为350-450℃,变形速率为0.001~0.5s,最大变形程度为50%的条件下,进行了恒应变速率高温压缩模拟试验研究,分析了合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化。结果表明:合金的稳态流变应力随应变速率的增大而增大,随温度的升高而降低;在给定的变形条件下,计算出合金的变形激活能和应力指数分别为223kJ/mol和6.9,建立了合金高温变形的本构方程;根据试验分析,合金变形温度为400℃,变形速率为0.5s^-1,或变形温度为450℃,变形速率为0.1s^-1下进行热压缩,可以得到组织结构均匀和热翅性加工良好的匹配.  相似文献   

5.
研制出一种以 Ti2 Co相弥散强化 α- Ti基体的钛合金 Ti- 8Co- 5 Al。实验表明 ,在变形温度为 72 5℃ ,应变速率为 1× 10 - 3s- 1 的条件下可获得断裂延伸率 70 8%。从实测应变速率敏感性指数为 0 .47,并结合试样断口处纵向剖面显微组织的扫描电镜观察 ,表明在Ti- 8Co- 5 Al合金中发生了α- Ti晶界及α- Ti/ Ti2 Co相界的滑移为主要变形机制的变形过程。采用 Ti- 8Co- 5 Al合金在 730℃和 1× 10 - 3s- 1 应变速率条件下成功地等温锻造出飞机零件 ,比 Ti- 6 Al- 4V合金低约 2 10℃  相似文献   

6.
Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图   总被引:2,自引:0,他引:2  
在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1.  相似文献   

7.
采用Gleeble-1500D热模拟实验机,研究了Mg-3.5Zn-0.6Y-0.5Zr合金在变形温度为300~450℃、变形速率为0.002~1s-1及变形量为50%的条件下的高温压缩变形行为,分析了流变应力与应变速率、变形温度的关系,计算了高温变形时变形激活能和应力指数,建立了该合金的本构方程。结果表明:Mg-3.5Zn-0.6Y-0.5Zr合金在热变形过程中真应力随着温度的升高而降低,真应力随着应变速率的升高而升高。该合金的流动应力可以用双曲正弦函数来描述。  相似文献   

8.
采用Gleeble-1500D热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度850~980℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为.根据应力-应变曲线分析了该合金的流变应力变化特点,建立了该合金的Arrhenius型本构方程及加工图.结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金应力影响显著;本实验测得的平均激活能为587.2 kJ/mol;该合金合适的加工条件为ε<0.6 s-1,温度大于850℃.  相似文献   

9.
Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及加工图   总被引:4,自引:3,他引:1  
采用Gleeble-1500热模拟实验机在温度为623~773K,应变速率为0.001~1s-1条件下对Mg-10Gd-4.8Y-2Zn-0.6Zr(wt%)合金进行热压缩实验,研究了该合金热变形行为及热加工特征,建立了该合金热变形时的本构方程和加工图.结果表明,该合金高温变形时的峰值应力随着应变速率的降低和变形温度的升高而显著减小;变形激活能为289.36kJ/mol;合金高温变形时存在两个失稳区,分别是变形温度为770~773K,应变速率为0.1s-1左右的区域,和变形温度小于750K,应变速率小于0.03s-1的区域;合金的最佳热加工温度为750~773K,应变速率为0.001~0.01s-1.  相似文献   

10.
采用Gleeble-3800动态模拟实验机,研究了亚稳β钛合金Ti-4Al-5Mo-6Cr-5V-1Nb在变形温度700~900℃、应变速率0.001~1 s-1、变形量10%~50%的热变形行为,分析了该合金在热变形过程中的组织性能演变规律.结果表明:随变形量的增加,合金的流动应力曲线变化不大,主变形区组织畸变程度增...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号