首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For applications ranging from phase equilibria to the processing of second-generation high T c superconductor-coated-conductors, phase diagrams constructed under carbonate-free conditions are needed. Subsolidus phase equilibria of BaO-R2O3-CuO z (R = Ho) have been investigated at (810°C), 21 kPa (875°C) and 0.1 MPa (850 and 930°C) by applying controlled atmosphere methods to minimize the presence of carbonate and CO2 and H2O contamination. Under carbonate-free conditions, most of these phase diagrams are different from those reported in the literature. In this paper, we also review and compare the phase diagrams of ten BaO-R2O3-CuO z systems (R = Nd, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm and Yb) that were previously determined in this laboratory under Among these diagrams, a distinct trend of phase formation and tie-line relationships is observed.  相似文献   

2.
Thermoelectric (TE) generator modules for a number of waste heat recovery applications are required to operate between room temperature and 500 K, a temperature range for which the composition of bismuth-telluride-based alloys needs to be adjusted to optimize performance. In particular n-type alloys do not perform as well as p-type and require a more systematic study. We have produced, by mechanical alloying followed by hot extrusion, alloys, within the range with fixed carrier concentration () to optimize their TE performance in the temperature range 300 K to 420 K. The optimum composition has been identified to be and which is very close to the composition that also maximizes the ratio of the electron mobility to the lattice component of the thermal conductivity. The optimized alloy performance can be further increased by adjusting the carrier concentration.  相似文献   

3.
Nanotrenches are induced by thermal annealing Au droplets on ZnSe surfaces. High-resolution scanning electron microscopy studies of the nanotrench structures reveal that the preferred migration directions of the catalyst droplets are along the direction family. On a ZnSe(111)B surface, each of the trenches is along one of the six directions while on a nonvicinal ZnSe(100) surface, the trenches are along a pair of antiparallel directions. Based on the results obtained from atomic force microscopy surface profiling and electron energy-loss spectroscopy chemical analysis techniques, a model is proposed to describe the possible formation mechanisms of the␣observed nanotrenches. The highly parallel nanotrenches induced on the Au/ZnSe(100) structure as revealed in this study are potentially useful as a template for in situ fabrication of ordered one-dimensional nanostructures (such as nanowires) of many materials.  相似文献   

4.
Ohmic contacts to n-type 4H- and 6H-SiC without postdeposition annealing were achieved using an interlayer of epitaxial InN beneath a layer of Ti. The InN films were grown by reactive dc magnetron sputtering at 450°C, whereas the Ti films were deposited by electron-beam evaporation at room temperature. The InN films were characterized by x-ray diffraction (XRD), secondary electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM), and Hall-effect measurements. Both XRD and TEM observations revealed that the Ti and InN films have epitaxial relationships with the 6H-SiC substrate as follows: (0001)[]Ti∥(0001)[]InN∥(0001)[]6H-SiC. The Ti/InN/SiC contacts displayed ohmic behavior, whereas Ti/SiC contacts (without an InN interlayer) were nonohmic. These results suggest that InN reduces the Schottky barrier height at the SiC surface via a small conduction-band offset and support previous reports of an electron accumulation layer at the surface of InN.  相似文献   

5.
6.
X-ray diffraction full-width at half-maximum (XRD FWHM), reflection high-energy electron diffraction (RHEED), and atomic force microscopy (AFM) indicate a mosaic structure for molecular-beam epitaxy (MBE) (211)B CdTe/Si. AFM measurements indicate long, thin, small-angle-disoriented grains for CdTe/Si epilayers. These disoriented grains are ~1 μm in the [] direction and are ~40 nm in the [] direction. The RHEED pattern in the [] direction depicts nearly ideal single-crystal periodicity. The RHEED pattern in the [] direction is indicative of small-angle-disoriented crystalline grains. Scanning electron microscopy (SEM), AFM, and XRD measurements all indicate an approximate factor of 10 increase in the Everson etch pit density (EPD) over standard Nomarski microscopy Everson EPD determination.  相似文献   

7.
Inclined crystallographic planes of the wurtzite structure were investigated in comparison with the zincblende structure in terms of surface geometry characteristics. The ball–stick model indicates that the semipolar surface possesses a surface polarity resembling the anion polarity, which agrees with the common experimental observations of epitaxial growth preference for the cation-polarity surface over the surface. The wurtzite surface was found to share geometrical similarities with the zincblende {100} surface uniquely among the possible semipolar planes. This finding encourages epitaxial growth on the plane of wurtzite semiconductors, e.g., GaN, with the potential of avoiding atomic step formations typically associated with off-axis crystallographic planes.  相似文献   

8.
The topmost atom of InP (001) surfaces, which were annealed at temperatures between 300 and 550°C or sputtered with 1 keV Ar+ at 300°C in ultra high vacuum, has been directly identified by means of coaxial impact collision ion scattering spectroscopy (CAICISS). Time-of-flight spectra of the annealed InP (001) surface exhibited both In and P peaks in both azimuth and in [100] azimuth, which revealed that the topmost layer of annealed InP (001) was comprised of In-terminated and P-terminated surfaces. On the other hand, time-of-flight spectrum of the InP (001) sputtered at 300°C revealed only an In peak in azimuth and revealed both In and P peaks in [100] azimuth. This result indicates that the topmost layer on the Ar+-sputtered InP (001) surface was completely terminated by In atoms. Furthermore, we indicate that surface damage induced by this sputtering treatment is little. The azimuthal depen-dence of CAICISS intensity scattered from In and P showed twofold symmetry with respect to [100] direction, which originated from the zinc-blende structure.  相似文献   

9.
Creep behavior of eutectic Sn-Cu lead-free solder alloy   总被引:3,自引:0,他引:3  
Tensile creep behavior of precipitation-strengthened, tin-based eutectic Sn-0.7Cu alloy was investigated at three temperatures ranging from 303–393 K. The steady-state creep rates cover six orders of magnitude (10−3−10−8 s−1) under the stress range of σ/E=10−4−10−3. The initial microstructure reveals that the intermetallic compound Cu6Sn5 is finely dispersed in the matrix of β-Sn. By incorporating a threshold stress, σ th, into the analysis, the creep data of eutectic Sn-Cu at all temperatures can be fitted by a single straight line with a slope of 7 after normalizing the steady-state creep rate and the effective stress, indicating that the creep rates are controlled by the dislocation-pipe diffusion in the tin matrix. So the steady-state creep rate, , can be expressed as exp , where Qc is the activation energy for creep, G is the temperature-dependent shear modulus, b is the Burgers vector, R is the universal gas constant, T is the temperature, σ is the applied stress, A is a material-dependent constant, and , in which σ OB is the Orowan bowing stress, and kR is the relaxation factor. An erratum to this article is available at .  相似文献   

10.
The surface morphology and crystallinity of HgCdTe films grown by molecular beam epitaxy (MBE) on both CdZnTe and CdTe/Si (211)B substrates were characterized using atomic force microscopy (AFM), as well as scanning (SEM) and transmission (TEM) electron microscopy. Crosshatch patterns and sandy-beach-like morphologies were commonly found on MBE (211) HgCdTe epilayers grown on both CdZnTe and CdTe/Si substrates. The patterns were oriented along the , , and directions, which were associated with the intersection between the (211) growth plane and each of the eight equivalent HgCdTe slip planes. This was caused by strain-driven operation of slip in these systems with relative large Schmid factor, and was accompanied by dislocation formation as well as surface strain relief. Surface crater defects were associated with relatively high growth temperature and/or low Hg flux, whereas microtwins were associated with relatively low growth temperature and/or high Hg flux. AFM and electron microscopy were used to reveal the formation mechanisms of these defects. HgCdTe/HgCdTe superlattices with layer composition differences of less than 2% were grown by MBE on CdZnTe substrates in order to clarify the formation mechanisms of void defects. The micrographs directly revealed the spiral nature of growth, hence demonstrating that the formation of void defects could be associated with the Burton, Cabrera, and Frank (BCF) growth mode. Void defects, including microvoids and craters, were caused by screw defect clusters, which could be triggered by Te precipitates, impurities, dust, other contamination or flakes. Needle defects originated from screw defect clusters linearly aligned along the directions with opposite Burgers vector directions. They were visible in HgCdTe epilayers grown on interfacial superlattices. Hillocks were generated owing to twin growth of void or needle defects on (111) planes due to low growth temperature and the corresponding insufficient Hg movement on the growth surface. Therefore, in addition to nucleation and growth of HgCdTe in the normal two-dimensional layer growth mode, the BCF growth mode played an important role and should be taken into account during investigation of HgCdTe MBE growth mechanisms.  相似文献   

11.
Lateral epitaxial growth (LEG) is a key technology to improve the lifetime of III-V nitride-based laser diodes (LDs) by reducing the dislocation density in the materials. To increase the area of low dislocation density, the lateral growth rate needs to be increased. In addition, suppression of the vertical growth is strongly desired to avoid unnecessarily thick growth, which would result in cracks in the epitaxial film. This paper reports the maskless LEG of GaN with extremely high lateral-to-vertical growth rate ratio using dimethylhydrazine as a nitrogen precursor. The lateral growth only occurs from the sidewalls of the etched mesa stripes without any dielectric masks. The lateral growth rate toward the direction is extremely high, as high as 10 μm/h, while no vertical growth is observed on the top of unmasked mesa. The cross-sectional transmission electron microscopic image shows that the threading dislocations in the wing region extend only toward the lateral direction. Note that almost smooth coalescence between the wing regions is confirmed by atomic force microscopy. X-ray diffraction measurements reveal that this maskless LEG drastically improves the crystallographic twist down to 97 arc-s, which is as comparably low as that of a free-standing GaN substrate. The presented maskless LEG is advantageous for optical device applications.  相似文献   

12.
Heteroepitaxial self-assembled quantum dots (SAQDs) will allow breakthroughs in electronics and optoelectronics. SAQDs are a result of Stranski–Krastanow growth, whereby a growing planar film becomes unstable after an initial wetting layer is formed. Common systems are and For applications, SAQD arrays need to be ordered. The roles of crystal anisotropy, random initial conditions and thermal fluctuations in influencing SAQD order during early stages of SAQD formation are studied through a simple stochastic model of surface diffusion. Surface diffusion is analyzed through a linear and perturbatively non-linear analysis. The role of crystal anisotropy in enhancing SAQD order is elucidated. It is also found that SAQD order is enhanced when the deposited film is allowed to evolve at heights near the critical wetting surface height that marks the onset of non-planar film growth.  相似文献   

13.
The creep properties of tin-based, lead-free solders, Sn-3.0Ag-0.5Cu and Sn-7.5Zn-3.0Bi, were investigated for the temperature range from 298 K to 398 K. The creep rupture time decreases with increasing initial stress and temperature. The Omega method is applied to the analysis of the solder creep curves. The creep rate is expressed by the following formula: , where and Ω are experimentally determined. The parameter , the imaginary initial strain rate, increases with increasing initial stress and temperature. The parameter Ω is temperature dependent, but less dependent on the initial stress. The apparent activation energy for is 108 kJ/mol in Sn-3.0Ag-0.5Cu and 83 kJ/mol in Sn-7.5Zn-3.0Bi. These values are close to the activation energy for the lattice diffusion of tin. The creep rupture time is calculated using the parameters and Ω. The calculated creep rupture time is in good agreement with the measured creep rupture time.  相似文献   

14.
InGaN-based light-emitting diodes (LEDs) were fabricated to have a higher light extraction through the photoelectrochemical (PEC) mesa shaping process. After the PEC selective wet oxidation and wet etching processes, stable and controllable crystallographic etching planes were formed as p-type GaN {} planes and n-type GaN {} planes included at an angle of 27 deg. The ever-present cone-shaped structure of a PEC-treated LED has a larger light scattering area and higher light extraction cones on the mesa sidewall, as analyzed by microphotoluminescence and light output power measurement. This cone-shaped-sidewall LED has a higher light output power and a larger divergence angle compared with a conventional LED measured in an LED chip form.  相似文献   

15.
Interfacial reactions of Y and Er thin films on both (111)Si and (001)Si have been studied by transmission electron microscopy (TEM). Epitaxial rare-earth (RE) silicide films were grown on (111)Si. Planar defects, identified to be stacking faults on planes with 1/6 displacement vectors, were formed as a result of the coalescence of epitaxial silicide islands. Double-domain epitaxy was found to form in RE silicides on (001)Si samples resulting from a large lattice mismatch along one direction and symmetry conditions at the silicide/(001)Si interfaces. The orientation relationships are [0001]RESi2−x// Si, RESi2−x//(001)Si and [0001]RESi2−x/ Si, RESi2−x//(001)Si. The density of staking faults in (111) samples and the domain size in (001) samples were found to decrease and increase with annealing temperature, respectively.  相似文献   

16.
The ilmenite–hematite (1 − x) FeTiO3 · xFe2O3 solid solution system is considered to be a novel material for spin-electronics, microelectronics, high-temperature electronics, and radhard electronics. This paper focuses on thin films of composition x = 0.33 grown on (100) MgO single-crystal substrates using pulsed-laser deposition (PLD) under different argon–oxygen mixtures. The surface of the MgO was found to possess MgO2 crystals, yielding an orientation relationship, [001] MgO ∥ [011] MgO2 and (00)MgO ∥ (10) MgO2. The structural characterizations show that the films are crystalline and homogeneous without any secondary phase. The films show a weak and inclined (110) growth epitaxy. A bandgap of 3.4–3.7 eV was obtained for these films from optical measurements carried out in the UV–visible region. Electrical measurements confirmed the semiconducting behavior. However, the resistivity was found to increase substantially on the slightest addition of oxygen into the chamber.  相似文献   

17.
The ultraviolet (UV) photoelectric characteristics of transitional metal (Cu) doped ZnO nanowires produced by the self-catalytic vapor–liquid–solid (VLS) method were investigated by performing a series of photoconduction and time-resolved measurements. The photocurrent voltage characteristics obtained on the nanowires configured as two-terminal metal–semiconductor–metal photodetectors exhibited a nonmonotonic behavior attributed to the interplay of several limiting mechanisms: Schottky contacts and trapping/detrapping effects that take place at low and intermediate (pre-avalanche) bias regimes, respectively. In the intermediate biases, the photocurrent was power-law dependent, i.e., changed with voltage as and for excitation wavelengths of 365 nm, 302 nm, and 254 nm, respectively. The dependence of the exponent on the wavelength of the light is analyzed and explained based on the detailed consideration of the contribution of different deep-defect Cu levels formed within the band gap of ZnO. The study will be important to those working in the area of ZnO-based nanophotodetectors, optical switches, and sensors.  相似文献   

18.
We present evidence that it is the presence or absence of atomic terraces with a specific crystallographic orientation on the (102) Al2O3 surface that promotes growth of single-crystal (001) CeO2 films over polycrystalline (111) CeO2 films. The CeO2 film nucleates so that the [010] and [100] directions of the film align parallel and perpendicular to the terrace edges. In the absence of terraces, multidomain (111) CeO2 films result in which the in-plane orientation of the two domains are rotated by 85.71°, so that a [110] CeO2 direction aligns parallel to either the or Al2O3 direction.  相似文献   

19.
Bipolar transistors are interesting for low noise front-end readout systems when high speed and low power consumption are required. This paper presents a fully integrated, low noise front-end design for the future Large Hadron Collider (LHC) experiments using the radiation hard SOI BiCMOS process. In the present prototype, the input-referred Equivalent Noise Charge (ENC) of 990 electrons (rms) for 12 pF detector capacitance with a shaping time of 25 ns and power consumption of 1.4 mW/channel has been measured. The gain of this front-end is 90 mV/MIP (Minimum Ionisation Particle: 1 fC) with non-linearity of less than 3% and linear input dynamic range is MIP. These results are obtained at room temperature and before irradiation. The measurements after irradiations by high intensity pion beam with an integrated flux of pions/cm2 are also presented in this paper.  相似文献   

20.
The results of an ab?initio modelling of aluminium substitutional impurity (\({\hbox {Al}}_{\rm Ge}\)), aluminium interstitial in Ge [\({\hbox {I}}_{\rm Al}\) for the tetrahedral (T) and hexagonal (H) configurations] and aluminium interstitial-substitutional pairs in Ge (\({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\)) are presented. For all calculations, the hybrid functional of Heyd, Scuseria, and Ernzerhof in the framework of density functional theory was used. Defects formation energies, charge state transition levels and minimum energy configurations of the \({\hbox {Al}}_{\rm Ge}\), \({\hbox {I}}_{\rm Al}\) and \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) were obtained for ?2, ?1, 0, \(+\)1 and \(+\)2 charge states. The calculated formation energy shows that for the neutral charge state, the \({\hbox {I}}_{\rm Al}\) is energetically more favourable in the T than the H configuration. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) forms with formation energies of ?2.37 eV and ?2.32 eV, when the interstitial atom is at the T and H sites, respectively. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) is energetically more favourable when the interstitial atom is at the T site with a binding energy of 0.8 eV. The \({\hbox {I}}_{\rm Al}\) in the T configuration, induced a deep donor (\(+\)2/\(+1\)) level at \(E_{\mathrm {V}}+0.23\) eV and the \({\hbox {Al}}_{\rm Ge}\) induced a single acceptor level (0/?1) at \(E_{\mathrm {V}}+0.14\) eV in the band gap of Ge. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) induced double-donor levels are at \(E_{\rm V}+0.06\) and \(E_{\rm V}+0.12\) eV, when the interstitial atom is at the T and H sites, respectively. The \({\hbox {I}}_{\rm Al}\) and \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) exhibit properties of charge state-controlled metastability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号