首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cyclic CCK8 analogue, cyclo(29,34)[Dpr(29),Lys(34)]-CCK8 (Dpr=L-2,3-diaminopropionic acid), has been designed on the basis of the NMR structure of the bimolecular complex between the N-terminal fragment of the CCK(A) receptor and its natural ligand CCK8. The conformational features of cyclo(29,34)[Dpr(29),Lys(34)]-CCK8 have been determined by NMR spectroscopy in aqueous solution and in water containing DPC-d(38) micelles (DPC=dodecylphosphocholine). The structure of the cyclic peptide in aqueous solution is found to be in a relaxed conformation, with the backbone and Dpr29 side chain atoms making a planar ring and the N-terminal tripeptide extending approximately along the plane of this ring. In DPC/water, the cyclic peptide adopts a "boat-shaped" conformation, which is more compact than that found in aqueous solution. The cyclic constraint between the Dpr29 side chain and the CCK8 carboxyl terminus (Lys34) introduces a restriction in the backbone conformational freedom. However, the interaction of cyclo(29,34)[Dpr(29),Lys(34)]-CCK8 with the micelles still plays an important role in the stabilisation of the bioactive conformation. A careful comparison of the NMR structure of the cyclic peptide in a DPC micelle aqueous solution with the structure of the rationally designed model underlines that the turn-like conformation in the Trp30-Met31 region is preserved, such that the Trp30 and Met31 side chains can adopt the proper spatial orientation to interact with the CCK(A) receptor. The binding properties of cyclo(29,34)[Dpr(29),Lys(34)]-CCK8 to the N-terminal receptor fragment have been investigated by fluorescence spectroscopy in a micellar environment. Estimates of the apparent dissociation constant, K(d), were in the range of 70-150 nM, with a mean value of 120+/-27 nM. Preliminary nuclear medicine studies on cell lines transfected with the CCK(A) receptor indicate that the sulfated-Tyr derivative of cyclo(29,34)[Dpr(29),Lys(34)]-CCK8 displaces the natural ligand with an IC(50) value of 15 microM.  相似文献   

2.
The cover picture shows a molecular model of the interaction between the new CCK8 analogue, Cycle29,34[Dpr29,Lys34]‐CCK8 (shown as a CPK model) and the receptor fragment CCKA‐R(1–47) (represented by a pink ribbon). The introduction of the cyclic constraint between the Dpr29 sidechain and the CCK8 C terminus (Lys34) decreases the flexibility of the molecule to stabilize the bioactive conformation of Cycle29,34[Dpr29,Lys34]‐CCK8. The Trp30 and Met31 side chains are in favorable orientations for interaction with the CCKA receptor. Expansions of the aromatic/amide regions of the 1H NMR spectra of Cycle29,34[Dpr29,Lys34]‐CCK8 in aqueous solution (top) and in presence of dodecylphosphocholine‐d38 micelles (bottom) are shown in the inset. Further details can be found in the article by Morelli and co‐workers on p. 1176 ff.  相似文献   

3.
Herein we propose the D ‐Trp‐Phe sequence within an inverse type II β‐turn as a new kind of pharmacophoric motif for μ‐opioid receptor (MOR) cyclopeptide agonists. Initially, we observed that c[Tyr‐D ‐Pro‐D ‐Trp‐Phe‐Gly] ( 4 ), an analogue of endomorphin‐1 (H‐Tyr‐Pro‐Trp‐Phe‐NH2) lacking the crucial protonatable amino group of Tyr 1, is a MOR agonist with 10?8 M affinity. Molecular docking analysis suggested that the relevant interactions with the receptor involve D ‐Trp‐Phe. The bioactive conformation of this region was investigated by selected derivatives of 4 designed to adopt an inverse type II β‐turn. These efforts led to c[Tyr‐Gly‐D ‐Trp‐Phe‐Gly] ( 14 ) and to the cyclotetrapeptide c[D ‐Asp‐1‐amide‐β‐Ala‐D ‐Trp‐Phe] ( 15 ), showing improved nanomolar affinity. Both 14 and 15 selectively bind MOR, as they have negligible affinity for the κ‐ and δ‐opioid receptors. Both 14 and 15 behave as partial MOR agonists in functional assays. Conformational and docking analyses confirm the role of the inverse β‐turn in binding. These results indicate that the D ‐Trp‐Phe inverse β‐turn structure can be used for designing non‐endomorphin‐like peptidomimetic opioid agonists in general, characterized by an atypical mechanism of interaction between ligand and receptor.  相似文献   

4.
Human galanin is a 30 amino acid neuropeptide that elicits arange of biological activities by interaction with G protein-coupledreceptors. We have generated a model of the human GALR1 galaninreceptor subtype (hGALR1) based on the alpha carbon maps offrog rhodopsin and investigated the significance of potentialcontact residues suggested by the model using site-directedmutagenesis. Mutation of Phe186 within the second extracellularloop to Ala resulted in a 6-fold decrease in affinity for galanin,representing a change in free energy consistent with hydrophobicinteraction. Our model suggests interaction between Phe186 ofhGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificitywas investigated by replacement of residues in hGALR1 with thecorresponding residues in hGALR2 and use of the hGALR2-specificligands hGalanin(2–30) and [D-Trp2]hGalanin(1–30).The His267Ile mutant receptor exhibited a pharmacological profilecorresponding to that of hGALR1, suggesting that His267 is notinvolved in a receptor–ligand interaction. The mutationPhe115Ala resulted in a decreased binding affinity for hGalaninand for hGALR2-specific analogues, indicating Phe115 to be ofstructural importance to the ligand binding pocket of hGALR1but not involved in direct ligand interaction. Analysis of Glu271Trpsuggested that Glu271 of hGALR1 interacts with the N-terminusof galanin and that the Trp residue in the corresponding positionin hGALR2 is involved in receptor subtype specificity of binding.Our model supports previous reports of Phe282 of hGALR1 interactingwith Trp2 of galanin and His264 of hGALR1 interacting with Tyr9of galanin.  相似文献   

5.
The muscarinic acetylcholine G-protein-coupled receptors are implicated in diseases ranging from cognitive dysfunctions to smooth-muscle disorders. To provide a structural basis for drug design, we used the MembStruk computational method to predict the 3D structure of the human M1 muscarinic receptor. We validated this structure by using the HierDock method to predict the binding sites for three agonists and four antagonists. The intermolecular ligand-receptor contacts at the predicted binding sites agree well with deductions from available mutagenesis experiments, and the calculated relative binding energies correlate with measured binding affinities. The predicted binding site of all four antagonists is located between transmembrane (TM) helices 3, 4, 5, 6, and 7, whereas the three agonists prefer a site involving residues from TM3, TM6, and TM7. We find that Trp 157(4) contributes directly to antagonist binding, whereas Pro 159(4) provides an indirect conformational switch to position Trp 157(4) in the binding site (the number in parentheses indicates the TM helix). This explains the large decrease in ligand binding affinity and signaling efficacy by mutations of Trp 157(4) and Pro 159(4) not previously explained by homology models. We also found that Asp 105(3) and aromatic residues Tyr 381(6), Tyr 404(7), and Tyr 408(7) are critical for binding the quaternary ammonium head group of the ligand through cation-pi interactions. For ligands with a charged tertiary amine head group, we suggest that proton transfer from the ligand to Asp 105(3) occurs upon binding. Furthermore, we found that an extensive aromatic network involving Tyr 106(3), Trp 157(4), Phe 197(5), Trp 378(6), and Tyr 381(6) is important in stabilizing antagonist binding. For antagonists with two terminal phenyl rings, this aromatic network extends to Trp 164(4), Tyr 179(extracellular loop 2), and Phe 390(6) located at the extracellular end of the TMs. We find that Asn 382(6) forms hydrogen bonds with selected antagonists. Tyr381(6) and Ser 109(3) form hydrogen bonds with the ester moiety of acetylcholine, which binds in the gauche conformation.  相似文献   

6.
The importance of Trp H33 in antibody recognition of DNA containinga central pyrimidine (6–4) pyrimidone photoproduct wasinvestigated. This residue was replaced by Tyr, Phe and Alaand the binding abilities of these mutants were determined bysurface plasmon resonance and fluorescence spectroscopy. Conservativesubstitution of Trp H33 by Tyr or Phe resulted in moderate lossesof binding affinity; however, replacement by Ala had a significantlylarger impact. The fluorescence properties of DNA containinga (6–4) photoproduct were strongly affected by the identityof the H33 residue. DNA binding by both the wild-type and theW-H33-Y mutant was accompanied by a small degree of fluorescencequenching; by contrast, binding by the W-H33-F and W-H33-A mutantsproduced large fluorescence increases. Taken together, thesevariations in binding and fluorescence properties with the identityof the H33 residue are consistent with a role in photoproductrecognition by Trp H33 in the high-affinity antibody 64M5.  相似文献   

7.
Peptide-based agonists of the μ opioid receptor (μOR) are promising therapeutic candidates for pain relief with reduced side effects compared to morphine. A deep understanding of μOR–ligand interactions is necessary for future design of peptide-based opioid analgesics. To explore the requirements of the μOR binding pocket, eight new analogues of our cyclic peptide Tyr-c[d -Lys−Phe−Phe−Asp]NH2 displaying high μOR affinity were synthesized, in which Phe in either the third or fourth position was replaced by various derivatives of this amino acid (β3-Phe, homoPhe, β3-homoPhe and PhGly). The aim of this research was to examine the structural effects of such modifications on the bioactivity, and both experimental and theoretical methods were used. The binding of the cyclic analogues to all three OR types (μ, δ, κ) was assessed by radioligand competitive binding assay, and their functional activity was determined in a calcium mobilization assay. In order to provide structural hypotheses explaining the obtained experimental affinities, the complexes of the cyclic peptides with μOR were subjected to molecular modeling.  相似文献   

8.
We report the 3D structure predicted for the mouse MrgC11 (mMrgC11) receptor by using the MembStruk computational protocol, and the predicted binding site for the F-M-R-F-NH(2) neuropeptide together with four singly chirally modified ligands. We predicted that the R-F-NH(2) part of the tetrapeptide sticks down into the protein between the transmembrane (TM) domains 3, 4, 5, and 6. The Phe (F-NH(2)) interacted favorably with Tyr110 (TM3), while the Arg makes salt bridges to Asp161 (TM4) and Asp179 (TM5). We predicted that the Met extends from the binding site, but the terminal Phe residue sticks back into an aromatic/hydrophobic site flanked by Tyr237, Leu238, Leu240, and Tyr256 (TM6), and Trp162 (TM4). We carried out subsequent mutagenesis experiments followed by intracellular calcium-release assays that demonstrated the dramatic decrease in activity for the Tyr110Ala, Asp161Ala, and Asp179Ala substitutions, which was predicted by our model. These experiments provide strong evidence that our predicted G protein-coupled receptor (GPCR) structure is sufficiently accurate to identify binding sites for selective ligands. Similar studies were made with the mMrgA1 receptor, which did not bind the R-F-NH(2) dipeptide; we explain this to be due to the increased hydrophobic character of the binding pocket in mMrgA1.  相似文献   

9.
NMDA receptors are glutamate-gated ion channels (iGluRs) that are involved in several important physiological functions such as neuronal development, synaptic plasticity, learning, and memory. Among iGluRs, NMDA receptors have been perhaps the most actively investigated for their role in chronic neurodegeneration such as Alzheimer's, Parkinson's, and Huntington's diseases. Recent studies have shown that the NTD of subunit NR2B modulates ion channel gating through the binding of allosteric modulators such as the prototypical compound ifenprodil. In the present paper, the construction of a three-dimensional model for the NR2B modulatory domain is described and docking calculations allow, for the first time, definition of the ifenprodil binding pose at an atomic level and fully explain all the available structure-activity relationships. Moreover, in an attempt to add further insight into the ifenprodil mechanism of action, as it is not completely clear if it binds and stabilizes an open or a closed conformation of the NR2B modulatory domain, a matter, which is fundamental for the rational design of NMDA antagonists, MD simulations followed by an MM-PBSA analysis were performed. These calculations reveal that the closed conformation of the R1-R2 domain, rather than the open, constitutes the high affinity binding site for ifenprodil and that a profound stabilization of the closed conformation upon ifenprodil binding occurs. Thus, for a rational design and/or for virtual screening experiments, the closed conformation of the R1-R2 domain should be taken into account and our 3D model can provide valuable hints for the design of NR2B-selective antagonists.  相似文献   

10.
Chitinolytic β-N-acetyl-d-hexosaminidases, as a class of chitin hydrolysis enzyme in insects, are a potential species-specific target for developing environmentally-friendly pesticides. Until now, pesticides targeting chitinolytic β-N-acetyl-d-hexosaminidase have not been developed. This study demonstrates a combination of different theoretical methods for investigating the key structural features of this enzyme responsible for pesticide inhibition, thus allowing for the discovery of novel small molecule inhibitors. Firstly, based on the currently reported crystal structure of this protein (OfHex1.pdb), we conducted a pre-screening of a drug-like compound database with 8 × 10(6) compounds by using the expanded pesticide-likeness criteria, followed by docking-based screening, obtaining 5 top-ranked compounds with favorable docking conformation into OfHex1. Secondly, molecular docking and molecular dynamics simulations are performed for the five complexes and demonstrate that one main hydrophobic pocket formed by residues Trp424, Trp448 and Trp524, which is significant for stabilization of the ligand-receptor complex, and key residues Asp477 and Trp490, are respectively responsible for forming hydrogen-bonding and π-π stacking interactions with the ligands. Finally, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis indicates that van der Waals interactions are the main driving force for the inhibitor binding that agrees with the fact that the binding pocket of OfHex1 is mainly composed of hydrophobic residues. These results suggest that screening the ZINC database can maximize the identification of potential OfHex1 inhibitors and the computational protocol will be valuable for screening potential inhibitors of the binding mode, which is useful for the future rational design of novel, potent OfHex1-specific pesticides.  相似文献   

11.
The binding sites in hen egg-white lysozyme for neutral bromophenolred (BPR) and ionized bromophenol blue (BPB) have been characterizedat 2 Å resolution. In either case, the dye-bound enzymeis active against the polysaccharide, but not against the cellwall. Both binding sites are outside, but close to, the hexasaccharidebinding cleft in the enzyme. The binding site of BPR made upof Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possiblyArg125, is dose to subsite F while that of BPB made up of Tyr20,Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsitesA and B. The binding sites of the neutral dye and the ionizeddye are thus spatially far apart. The peptide component of thebacterial cell wall probably interacts with these cells duringenzyme action. Such interactions are perhaps necessary for appropriatelypositioning the enzyme molecule on the bacterial cell wall.  相似文献   

12.
Yu Y  Shao X  Cui Y  Liu HM  Wang CL  Fan YZ  Liu J  Dong SL  Cui YX  Wang R 《ChemMedChem》2007,2(3):309-317
The discovery of endomorphins (EMs) has opened the possibility of searching for new analgesics. However, the design of peptide analgesics has proven to be very difficult as a result of their conformational flexibility and a lack of clarity in structure-activity relationships (SAR). In EMs, the amino acid side chains exhibit considerable conformational flexibility, especially in the third aromatic ring, which is free to adopt a bioactive conformation. To resolve these problems, a series of C terminus EM analogues, [Xaa(4)-R]EMs, modified through the substitution of Phe(4) with nonaromatic residues and termination with benzyl groups, were designed to generate conformational constrains of the third aromatic ring by amide bond and torsion angles (phi(4) and psi(4)) of Xaa(4). Introduction of (S)-alpha-methyl or (S)/(R)-alpha-carboxamide on the methylene unit of the benzyl group was designed to produce an atypical topographical constraint (phi(5)) of the third aromatic ring rotation. Interestingly, some EM derivatives, with elimination of the C-terminal carboxamide group and significant changes in the address sequence (Phe(4)-NH(2)), still exhibited higher mu-opioid receptor (MOR) affinity than unmodified EMs. In contrast, some analogues with incorrectly constrained C termini displayed very low affinity and pharmacological activities. Thus, our results indicate that these EM analogues, with atypical constrained C termini, provide model compounds with potent MOR agonism. They also give evidence that the proper spatial orientation and conformational restriction of the third aromatic ring are crucial for the interaction of EMs with MOR.  相似文献   

13.
The elongated structures of polyamine inverse agonists such as 1,12‐diaminododecane (N12N) and 5‐(4‐aminobutyl)‐2‐thiopheneoctanamine (N4T8N) lend themselves to a combinatorial chemistry approach to explore a potential polyamine pharmacophore at the NMDA receptor. Herein we describe more than 100 new analogues of N4T8N obtained by breaking up the long octanamine arm into a dipeptide chain of equivalent length. Solid‐phase parallel synthesis based on cross‐linked polystyrene and a Wang anchor allowed the low‐scale preparation of four small libraries based on the combination of two amino acid residues (out of Gly, Leu, Phe, Lys, phenylglycine, Tyr, Trp, His, and Arg). The obtained compounds were tested as modulators of [3H]MK‐801 binding to rat brain membranes and of NMDA‐induced currents in cultured rat hippocampal neurons. Compounds with two aromatic residues acted as binding inhibitors (inverse agonists). Compounds with two Lys residues acted as binding stimulators (agonists) and had stimulatory and inhibitory effects on NMDA‐induced currents, depending on the holding potential. High sensitivity of binding inhibition to spermine was conferred by a Tyr residue, whereas a His residue favored high potency at acidic pH.  相似文献   

14.
The inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) by fosmidomycin was studied by using a kinetic assay based on the consumption of NADPH and synthetic substrate. Fosmidomycin is a slow tight-binding inhibitor of DXR that shows strong negative cooperativity (absolute value(h) = 0.3) in binding. Cooperativity is displayed during the initial (weak, K0.5 = 10 microM) binding event and does not change as the binding tightens to the equilibrium value of 0.9 nM over a period of seconds to minutes. A series of fosmidomycin fragments was examined, but all showed much weaker inhibition, in the mM range. A series of cyclic fosmidomycin analogues was also synthesised and tested, but these showed high-microM binding at best. None of the synthetic compounds showed time-dependent inhibition. We concluded that the slow tight-binding behaviour, and perhaps also cooperativity, are mediated by significant reorganisation of the active site upon fosmidomycin binding. This makes the rational design of new inhibitors of DXR difficult at best.  相似文献   

15.
Src homology 2 (SH2)-domain-mediated interactions with phosphotyrosine (pY)-containing ligands are critical for the regulation of SHP-1 phosphatase activity. Peptides based on a binding site from receptor tyrosine kinase Ros (EGLN-pY2267-MVL, 1) have recently been shown to bind to the SHP-1 N-terminal SH2 domain (N-SH2) with considerably high affinity. In addition, two peptides cyclized between positions -1 and +2 relative to pY (EGLc[K(COCH(2)NH)pYMX]L-NH(2), 2: X=D, 3: X=E) bound to the N-SH2 domain, but did not activate the enzyme and even partially prevented stimulation of SHP-1 activity by the physiological ligand 1. These findings prompted us to further examine the determinants for optimal binding to the N-SH2 domain and for the stimulation and inhibition of SHP-1 activity. Herein we demonstrate that combining the preferred residues in both pY+1 (such as Phe or norleucine, Nle) and pY+3 (such as homophenylalanine, Hfe) leads to highly efficient activating ligands of SHP-1. Particularly in the context of the cyclic peptides 7 (EGLc[K(COCH(2)NH)pYFD]Hfe-NH(2)) and 8 (EGLc[K(COCH(2)NH)pYNleD]HfeL-NH(2)), the incorporation of these residues resulted in high-affinity ligands with a significantly increased ability to stimulate SHP-1 activity. We suggest that different binding modes (according to consensus sequences class I and II) are responsible for obtaining either activating (7 and 8) or nonactivating (2 and 3) ligands. Peptides such as 7 and 8 that bind in the extended fashion of the type II mode activate the phosphatase through complete filling of the cavity for pY+3. In contrast, peptides such as 2 and 3 that bind in the class I mode do not activate the enzyme because they allow more conformational space at pY+3. Therefore, their binding does not force the conformational transition necessary to trigger the dissociation of N-SH2 and the catalytic domain.  相似文献   

16.
17.
The tRNA(Phe)-bound conformation of the aminoglycoside neamine, a member of the neomycin B family, has been investigated by transferred NOE experiments in aqueous solution. This is the first time that the bioactive conformation of an RNA-bound aminoglycoside has been determined by this method. In buffers without divalent Mg(2+) ions, a high degree of electrostatically driven unspecific binding of aminoglycosides to the RNA was observed. Careful optimization of experimental conditions yielded buffer conditions optimized for cryo-probe NMR experiments. In particular, addition of Mg(2+) ions to the solutions was necessary to reduce the amount of unspecific binding as monitored by one-dimensional NMR and surface plasmon resonance experiments. CD spectroscopy was used to probe the effect of aminoglycosides and buffer conditions on the double helical content of tRNA(Phe). Finally the tRNA(Phe)-bound conformation of neamine was determined by trNOE build-up curves and compared with the previously reported crystal structure of neomycin B complexed to this RNA. Although the aminoglycoside in the crystal structure contains several configurational errors, the overall shape of the crystallographically determined RNA-bound structure is identical to the RNA-bound conformation defined by the NMR experiments. Therefore, the crystal structure has been refined by trNOE data. This is particularly important in the context of aminoglycosides being discussed as lead structures for the development of new anti-RNA drugs.  相似文献   

18.
The receptor tyrosine kinase EGFR is regulated by complex conformational changes, and this conformational control is disturbed in certain types of cancer. Many ligands are known to bind EGFR in its active conformation, thereby preventing ATP from binding. Only a few ligands are known to stabilize EGFR in its inactive conformation, thus providing novel strategies for perturbing EGFR activity. We report a direct binding assay that enables the identification of novel ligands that bind to and stabilize the inactive conformation of EGFR.  相似文献   

19.
Basic fibroblast growth factor (bFGF) is implicated in the pathogenesis of several types of vascular and connective diseases. A key step in the discovery of bFGF receptor antagonists to mitigate these actions is to define the functional epitopes required for receptor binding of the growth factor. Using structure-based site-directed mutagenesis, two critical areas on the bFGF surface for the high affinity receptor binding have already been identified [Springer, B.A., Pantoliano, M.W., Barberal, F.A., Gunyuzlu, P.L., Thompson, L.D., Herblin, W.F., Rosenfeld, S.A. and Book, G.W. (1994) J. Biol. Chem., 269, 26879-26884; Zhu, H.Y., Ramnarayan, K., Anchin, J., Miao, Y., Sereno, A., Millman, L., Zheng, J., Balaji, V.N. and Wolff, M.E. (1995) J. Biol. Chem., 270, 21869-21874; Zhu, H.Y., Anchin, J., Ramnarayan, K., Zheng, J., Kawai, T., Mong, S. and Wolff, M.E. (1997) Protein Engng, 10, 417-421]. According to these studies, one receptor binding site includes two polar residues Glu96 and Asn104 on bFGF whereas the other includes four hydrophobic residues Tyr24, Tyr103, Leu140 and Met142. Using a protein modelling technique, we report here the identification of a new hydrophobic patch on bFGF which includes residues Tyr73, Val88 and Phe93. The role of this area on receptor binding affinity was evaluated by mutating each of these residues individually and determining the mutated protein's (mutein's) receptor binding affinity. In addition, we examined the role of two other hydrophobic residues, Phe30 and Leu138, on bFGF for high-affinity receptor binding. These two residues are the neighbors of the hydrophobic residues Tyr24 and Tyr103, respectively. Replacement of Val88 and Phe93 with alanine reduced the receptor binding affinity about 10- and 80-fold, respectively, compared with wild-type bFGF. In contrast, substitution of Phe30 and Leu138 with alanine has no effect on the receptor binding affinities. We conclude that the newly identified hydrophobic residues, Val88 and Phe93, are crucial for the receptor binding. The present data, together with the previous identification of four hydrophobic residues (Tyr24, Tyr103, Leu140 and Met142), suggests that there are two hydrophobic receptor binding sites on the bFGF surface. Our findings can be employed in the discovery and design of potent bFGF antagonists using computational methods.   相似文献   

20.
A novel structural class with high affinity and subtype selectivity for the sigma 2 receptor has been discovered. Preliminary structure–affinity relationship data are presented showing that 8‐substituted 1,3,4,5‐tetrahydro‐1,5‐methanobenzazepine (norbenzomorphan) derivatives elicit modest to high selectivity for the sigma 2 over the sigma 1 receptor subtype. Indeed, piperazine analogue 8‐(4‐(3‐ethoxy‐3‐oxopropyl)piperazin‐1‐yl)‐1,3,4,5‐tetrahydro‐1,5‐methanobenzazepine‐2‐carboxylate (SAS‐1121) is 574‐fold selective for the sigma 2 over the sigma 1 receptor, thereby establishing it as one of the more subtype‐selective sigma 2 binding ligands reported to date. Emerging evidence has implicated the sigma 2 receptor in multiple health disorders, so the drug‐like characteristics of many of the selective sigma 2 receptor ligands disclosed herein, coupled with their structural similarity to frameworks found in known drugs, suggest that norbenzomorphan analogues may be promising candidates for further development into drug leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号