首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High temperature low cycle fatigue (LCF) is influenced by various time dependent processes such as creep, oxidation, phase transformations and dynamic strain ageing (DSA) depending on test conditions of strain rate and temperature. In this paper the detrimental effects of DSA and oxidation in high temperature LCF are discussed with reference to extensive studies on 316L(N) stainless steel. DSA has been found to enhance the stress response and reduce ductility. It localizes fatigue deformation, enhances fatigue cracking and reduces fatigue life. High temperature oxidation accelerates transgranular and intergranular fatigue cracking during long hold time tests in austenitic stainless steel. In welds, microstructural features such as presence of coarse grains and formation of brittle phases due to transformation of δ ferrite during testing influence crack initiation, propagation and fatigue life.  相似文献   

2.
Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.  相似文献   

3.
Axial fatigue tests were performed on a 7075-T6 aluminum alloy in tension-compression and under superimposed positive mean stresses in dry air and in aqueous 0.5N NaCl solution. Both corrosive environments and positive mean stresses resulted in lower fatigue lives but no interaction between these variables was observed. Crack initiation in air occurred at electropolish pits at inclusion/alloy interfaces and propagated primarily in a Stage I (crystallographic) mode. Crack initiation in NaCl solutions occurred at heavily corroded regions surrounding non-metallic inclusions and propagated in a cleavage mode normal to the direction of applied stress. The relative number of cycles to crack initiation is shown to be a function of the magnitude of cyclic stress but not of mean stress. Similarly, the percentage of reduction in fatigue life due to corrosive environments is approximately constant at all mean stress levels. These data indicate that fatigue crack initiation is primarily related to mobile dislocations associated with cyclic deformation. Crack propagation on the other hand appears to be controlled by the maximum applied stress. A model for environment assisted cracking is presented which suggests that hydrogen induced cleavage is responsible for the degradation in fatigue properties of this alloy. Formerly Research Assistant, Materials Division, Rensselaer Polytechnic Institute, Troy, N. Y. 12181.  相似文献   

4.
The low-cycle fatigue (LCF) behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 °C and 1000 °C employing a triangular waveform and a constant strain amplitude of ±0.4 pct. Correlations between macroscopic cyclic deformation and fatigue life with the various microstructural phenomena were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the crack initiation and propagation modes, deformation substructure, and carbide precipitation. Cyclic stress response varied as a complex function of temperature. Dynamic strain aging (DSA) was found to occur over a wide temperature range between 300 °C and 750 °C. In the DSA domain, the alloy exhibited marked cyclic hardening with a pronounced maximum at 650 °C. Dynamic strain aging has been documented through the occurrence of serrated yielding, inverse temperature dependence of maximum cyclic stress, and cyclic inelastic strain developed at half of the fatigue life. Additionally, the alloy also displayed a negative strain rate sensitivity of cyclic stress in the DSA regime. These macroscopic features in the DSA domain were accompanied by the substructure comprised of coplanar distribution of dislocations associated with the formation of pileups, stacking faults, and very high dislocation density. Toward the end of the DSA domain, dislocation pinning by M23C6 precipitates occurred predominantly. The deformation behavior below and above the DSA domain has also been investigated in detail. The temperature dependence of LCF life showed a maximum at ≈300 °C. The drastic reduction in life between 300 °C and 850 °C has been ascribed primarily to the deleterious effects of DSA on crack initiation and propagation, while the lower life at temperatures less than 200 °C has been attributed to the combined influence of low ductility and larger cyclic response stress.  相似文献   

5.
This study investigates the thermal fatigue cracking behavior of high-silicon spheroidal graphite (SG) cast iron. Irons with different residual magnesium contents ranging from 0.038 to 0.066 wt pct are obtained by controlling the amount of spheroidizer. The repeated heating/cooling test is performed under cyclic heating in various temperatures ranging from 650 °C to 800 °C. Experimental results indicate that the thermal fatigue cracking resistance of high-silicon SG cast iron decreases with increasing residual magnesium content. The shortest period for crack initiation and the largest crack propagation rate of the specimens containing 0.054 and 0.060 wt pct residual magnesium contents are associated with heating temperatures of 700 °C and 750 °C. Heating temperatures outside this range can enhance the resistance to thermal fatigue crack initiation and propagation. When thermal fatigue cracking occurs, the cracks always initiate at the surface of the specimen. The major path of crack propagation is generally along the eutectic cell-wall region among the ferrite grain boundaries, which is the location of MgO inclusions agglomerating together. On the other hand, dynamic recrystallization of ferrite grains occurs when the thermal cycle exceeds a certain number after testing at 800 °C. Besides, dynamic recrystallization of the ferrite matrix suppresses the initiation and propagation of thermal fatigue cracking.  相似文献   

6.
Intergranular cracking of irradiated austenitic alloys depended on localized grain boundary stress and deformation in both high-temperature aqueous and argon environments. Tensile specimens were irradiated with protons to doses of 1 to 7 dpa and then strained in high-temperature argon, simulated boiling water reactor normal water chemistry, and supercritical water environments. Quantitative measurements confirmed that the initiation of intergranular cracks was promoted by (1) the formation of coarse dislocation channels, (2) discontinuous slip across grain boundaries, (3) a high inclination of the grain boundary to the tensile axis, and (4) low-deformation propensity of grains as characterized by their Schmid and Taylor factors. The first two correlations, as well as the formation of intergranular cracks at the precise locations of dislocation channel–grain boundary intersections are evidence that localized deformation drives crack initiation. The latter two correlations are evidence that intergranular cracking is promoted at grain boundaries experiencing elevated levels of normal stress.  相似文献   

7.
Direct observation of initial damage-evolution processes occurring during cyclic testing of an unnotched SCS-6 fiber-reinforced Ti-15-3 composite has been carried out. The aligned fibers break at an early stage, followed by debonding and subsequent sliding along the interface between the reaction layer (RL) and Ti-15-3 alloy matrix. Matrix cracking initiation from the initial broken fiber and RL was avoided. This fracture behavior during cyclic loading is modeled and analyzed by the finite-element method, with plastic deformation of the matrix being considered. The plastic strain in the matrix at the initial crack and at the deflected crack tips, when the interface crack is deflected into the RL after extensive interface debonding propagation, is characterized. The effects of interfacial debond lengths and test temperatures on the matrix cracking mechanism are discussed, based on a fatigue-damage summation rule under low-cycle fatigue conditions. The numerical results provide a rationale for experimental observations regarding the avoidance and occurrence of the matrix cracking found in fiber-reinforced titanium composites.  相似文献   

8.
High frequency (123 Hz) fatigue crack propagation studies were conducted under rising ΔK conditions (R-ratio = 0.22) on single edge notch specimens of austenitic stainless steel (type 316L) that contained an annealed precrack. Tests were conducted in near neutral (pH 5.5) solutions of 1 M NaCl and 1 M NaCl + 0.01 M Na2S2O3 under potentiostatically controlled conditions and in desiccated air. Attention was directed primarily to the near threshold behavior and the stage I (crystallographic) region of cracking. Good mixing between the crack solution and bulk solution was obtained and crack retardation and arrest effects, due to surface roughness induced closure, were minimized at high anodic potentials by electrochemical erosion. Thermodynamic considerations showed that hydrogen played no role in fatigue crack propagation. Analysis of the results in terms of the estimated effective cyclic stress intensity, ΔK eff, showed a systematic effect of potential on the average crack growth increment per cycle,da/dN. Anodic dissolution processes were considered to make an insignificant contribution toda/dN. A model was proposed for stage I fatigue cracking based on the effect of oxide nucleation rate on restricted slip reversal. The essential features of the model were considered to be relevant to cracking in aqueous environments and in desiccated air.  相似文献   

9.
The fatigue crack initiation and propagation behavior of a niobium bearing HSLA steel heat treated to give two tempered martensitic microstructures presumably with and without fine niobium carbides has been studied by light microscopy, electron microscopy, and strain gage measurements of plastic zone deformation. The high cycle, stress controlled fatigue life of the steel in both heat treated conditions was quite similar with the steel presumably containing the fine niobium carbides having slightly better resistance at low stress amplitudes. This slightly better high cycle resistance is associated with better resistance to fatigue crack initiation for this heat treatment. The fatigue crack propagation behavior of the steel was the opposite. The steel presumably containing the fine niobium carbides exhibited a much faster fatigue crack growth rate than that without them. The difference in growth rates is explained in terms of the plastic work expended during the propagation of the fatigue crack.  相似文献   

10.
对H13热作模具钢试样进行600 ℃等温疲劳实验,通过显微维氏硬度计、金相显微镜(OM)、超景深显微镜和扫描电子显微镜(SEM)等设备研究了0.7%,0.9%和1.1%三种不同应变幅对疲劳行为的影响。结果表明:应力应变滞后回线呈现对称性,应变幅越大,滞回环面积越大。H13钢在实验中呈现循环软化的特征,应变幅越大,疲劳寿命越短,1.1%应变幅试样寿命约为0.7%应变幅试样的61.2%。应变幅的增加对裂纹萌生和扩展起促进作用,1.1%应变幅试样裂纹扩展最明显。高温非真空实验条件下,材料表面产生的氧化物也会促进裂纹扩展。疲劳后试样微观组织发生明显的长大和粗化,较大应变幅对碳化物析出有更大的助力,还会加速材料软化。有应变幅试样显微硬度远低于无应变幅试样。   相似文献   

11.
The fatigue behavior of an Fe-0.3 wt pet C-4 wt pet Ni-1 wt pet Al-1 wt pet Cu precipitation hardening steel was investigated in three different heat treated conditions which give similar tensile strengths but different microstructures. One heat treatment produced a lightly tempered lath martensite having fine carbides and a high dislocation density. The other two heat treatments produced highly tempered martensite with coarse carbides, fine intermetallic precipitates and a relatively low dislocation density. The steel in the lightly tempered condition showed marked softening on strain cycling while the highly tempered conditions resulted in both hardening and softening. The lightly tempered structure had better low cycle fatigue resistance but the two highly tempered structures had better high cycle resistance. The dislocation substructure in the lightly tempered steel rearranges itself and accommodates plastic strain during cyclic deformation while the substructure in the highly tempered structures containing fine precipitates resists rearrangement. This difference is suggested as the reason for the differences in behavior. The three conditions show little variation in their resistance to fatigue crack propagation. However, the highly tempered, precipitate containing structures were much more resistant to fatigue crack initiation in notched specimens.  相似文献   

12.
范红妹  曾燕屏  王习术  崔正强  谢锡善 《钢铁》2007,42(7):72-75,86
采用扫描电镜原位观测的方法,跟踪观察了低周疲劳载荷下航空用超高强度钢MA250中夹杂物导致裂纹萌生与扩展的微观行为,得到了MA250钢低周疲劳裂纹萌生与扩展的基本特性,讨论了精确测定MA250钢疲劳裂纹扩展速率的方法.  相似文献   

13.
The influence of aqueous environments on fatigue crack propagation behavior was investigated for two types of structural steel (SB42 and HT80) in pure and 3 pct NaCl water under freely corroding conditions. In the intermediate to high ΔK region, fatigue crack propagation rates were higher in both aqueous environments and in 1 atm hydrogen than in air for both types of steel, and the acceleration effect increased power functionally with decreasing frequency from 5 to 0.0005 Hz. Such a crack growth acceleration property was explained by the mechanism of cyclically induced hydrogen embrittlement, as shown by the brittle striations formed on the fracture surfaces. On the other hand, in the lower ΔK region, both aqueous environments inversely suppressed crack growth and enhanced the threshold stress intensity factor range ΔK th just above the ΔK th in air, while only in aerated 3 pct NaCl water was the crack observed to grow even under the condition below the ΔK th in air, not showing the threshold. Probable mechanisms for such fairly complex environmental effects were also suggested.  相似文献   

14.
The fatigue behavior of an Fe-0.3 wt pct C-4 wt pct Ni-1 wt pct Al-1 wt pct Cu precipitation hardening steel was investigated in three different heat treated conditions which give similar tensile strengths but different microstructures. One heat treatment produced a lightly tempered lath martensite having fine carbides and a high dislocation density. The other two heat treatments produced highly tempered martensite with coarse carbides, fine intermetallic precipitates and a relatively low dislocation density. The steel in the lightly tempered condition showed marked softening on strain cycling while the highly tempered conditions resulted in both hardening and softening. The lightly tempered structure had better low cycle fatigue resistance but the two highly tempered structures had better high cycle resistance. The dislocation substructure in the lightly tempered steel rearranges itself and accommodates plastic strain during cyclic deformation while the substructure in the highly tempered structures containing fine precipitates resists rearrangement. This difference is suggested as the reason for the differences in behavior. The three conditions show little variation in their resistance to fatigue crack propagation. However, the highly tempered, precipitate containing structures were much more resistant to fatigue crack initiation in notched specimens. Former Postdoctoral Research Associate, Department of Materials Science and Engineering, and Walter P. Murphy Professor of Materials Science and Engineering  相似文献   

15.
Fretting fatigue studies were performed on quenched and tempered 4130 steel in laboratory air and in argon as functions of relative slip displacement, normal pressure and applied cyclic stress. Significant reductions in fatigue resistance were observed at all stress levels and increased with increasing normal pressures. However, a minimum in resistance was observed for relative slip magnitudes of 20 to 30 μm. Inert environments improve fatigue resistance under fretting conditions. Metallographic observations indicated that subsurface cracking was generally observed and that stress concentrations associated with this cracking resulted in deviations to and away from the faying surfaces. Fretting cracks which deviated into the alloy become initiated fatigue cracks. A mechanical model is proposed for fretting induced fatigue crack initiation which suggests that this phenomenon is a simple extension of the basic fretting process.  相似文献   

16.
The influence of texture on the deformation behavior and monotonic and cyclic properties of two recrystallized P/MX7091-T651 plates was investigated. Thermal mechanical treatments were used to produced two different textures which varied in intensity by a factor of four. The two plates had similar grain and precipitate structures. The deformation behavior and mechanical properties were correlated with grain orientation and grain boundary misorientation. Differences in fracture surface roughness and crack deflection frequencies were observed for the two texture variants during fatigue crack propagation studies. Deformation behavior, crack closure, and crack deflection affected the fatigue crack growth rates. A small but measurable improvement in tensile strength, fatigue strength, and fatigue crack growth resistance was obtained in the sharply textured material when compared with the weakly textured counterpart.  相似文献   

17.
Very high cycle fatigue behavior(107-109 cycles)of 304 Laustenitic stainless steel was studied with ultrasonic fatigue testing system(20kHz).The characteristics of fatigue crack initiation and propagation were discussed based on the observation of surface plastic deformation and heat dissipation.It was found that micro-plasticity(slip markings)could be observed on the specimen surface even at very low stress amplitudes.The persistent slip markings increased clearly along with a remarkable process of heat dissipation just before the fatigue failure.By detailed investigation using a scanning electron microscope and an infrared camera,slip markings appeared at the large grains where the fatigue crack initiation site was located.The surface temperature around the fatigue crack tip and the slip markings close to the fracture surface increased prominently with the propagation of fatigue crack.Finally,the coupling relationship among the fatigue crack propagation,appearance of surface slip markings and heat dissipation was analyzed for a better understanding of ultrasonic fatigue damage behavior.  相似文献   

18.
李振  李花兵 《山西冶金》2013,36(4):7-10
利用实验室条件下冶炼的Fe-Cr-Nb-Mo铁素体不锈钢,对其高温强度和热疲劳性能进行了研究。研究结果表明:实验钢的高温抗拉强度和屈服强度优于或基本相当于目前所使用的铁素体不锈钢的性能;实验钢的热疲劳裂纹从V形缺口处萌生,夹杂物为裂纹萌生优先区域;热疲劳裂纹长度和扩展速度随热疲劳上限温度的升高而增大;热疲劳裂纹优先沿晶界扩展,高温氧化是疲劳裂纹扩展的主要因素。  相似文献   

19.
《Acta Metallurgica》1987,35(7):1639-1648
Slow strain rate tensile tests, and some fatigue tests, were run at room temperature in the environments of air, liquid mercury and hydrogen. The hydrogen was generated electrolytically, with the charging and testing commencing simultaneously. The specimens were quenched and tempered to a range of hardness levels. The embrittlement by hydrogen and by mercury differed in several aspects. In hydrogen alone, there was a loss of tensile strength, a marked strain rate sensitivity, and a crack progression of transgranular to intergranular to microvoid coalescence. In mercury, the crack initiation was intergranular. It is believed that the hydrogen induced transgranular cracking is plasticity related with hydrogen penetration occurring at an enhanced rate. This situation would not arise with mercury.  相似文献   

20.
The crack initiation and propagation behavior of high cobalt molybdenum stainless bearing steel was studied by rotating bending fatigue test with smooth cylindrical specimens and notched specimens (theoretical stress concentration factor Kt=3). The fatigue limit and S- N curve of bearing steel were measured by up- and- down method and group method, respectively. The fractures of the specimens were observed by scanning electron microscopy. The results show that the cracking type of the smooth specimens is single source initiation. The crack source is surface defects and subsurface inclusion. The surface defects are surface roughness, persistent slip band and machining dent, while the subsurface inclusion is Al2O3- CaO- MgO- SiO2 composite inclusion. The fatigue limit of notched specimens is significantly decreased. The cracking type of the notched specimens is multi- source initiation. The notch sensitivity factor qf of bearing steel is 1. 18. The fatigue failure of the smooth specimens is transferred from the surface roughness with high stress amplitude to the persistent slip bands, the machining dents and the inclusions with low stress amplitude. The fatigue crack initiation life accounts for more than 94. 1% of the whole fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号