首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 64 毫秒
1.
在酸性催化剂作用下,采用悬浮聚合的方法制备了酸性酚醛树脂/蒙脱土纳米复合材料。XRD和TEM的实验结果表明该材料结构为部分剥离、部分插层型,即一部分蒙脱土被剥离为单层,而另一部分为几个片层的聚集体。  相似文献   

2.
将单体插层原位聚合法引入到通用橡胶聚合中,采用阴离子取合制备了丁二烯橡胶/蒙脱土纳米复合材料,XRD分析显示蒙脱土层间距明显增大,表明实现了丁二烯插层原位聚合,FTIR分析显示蒙脱土的加入使得丁二烯橡胶微结构发生了改变。  相似文献   

3.
原位插层聚合制备PVC/蒙脱土纳米复合材料   总被引:10,自引:5,他引:10  
采用氯乙烯单体直接插层到蒙脱土中进行原位插层聚合,制备纳米复合材料,并用小角X射线衍射(XRD)、扫描电子显微镜(SEM)和电子探针技术对复合材料进行了结构表征。实验结果表明:采用原位插层聚合法制得的PVC/蒙脱土(MMT)复合材料为剥离型纳米复合材料。  相似文献   

4.
聚乙烯/蒙脱土纳米复合材料的制备及性能研究   总被引:16,自引:2,他引:16  
刘钦甫  糜家铃  付正 《硅酸盐学报》2004,32(11):1394-1398
以蒙脱土/十六烷基三甲基溴化铵作为前驱物负载Ziegler-Natta催化剂,通过插层原位聚合的方法制备了聚乙烯/蒙脱土纳米复合材料。对聚乙烯/蒙脱土纳米复合材料的制备规律进行了研究。用透射电镜、扫描电镜、XRD,DSC等手段研究了结构和性能的相互关系,以及蒙脱土的含量对复合材料熔点与结晶行为的影响。研究表明:蒙脱土的片层结构被破坏,并以纳米级均匀分散在聚合物基体中。蒙脱土的质量分数为3%左右时,聚乙烯/蒙脱土纳米复合材料具有优良的综合性能。  相似文献   

5.
热固性塑料/蒙脱土纳米复合材料最新研究进展   总被引:1,自引:0,他引:1  
概述了用插层法制备热固性塑料与蒙脱土纳米复合材料在国内外研究的一些最新进展,并对其复合过程中的影响因素进行了详细的介绍,对其发展应用前景进行了展望。  相似文献   

6.
采用原位聚合的方法制备了苯乙烯马来酸酐无规共聚物(SMA)/蒙脱土(MMT)纳米复合材料,研究了MMT的用量对插层效果的影响.研究表明,采用原位聚合的方法可制得SMA/MMT纳米复合材料,随着MMT用量的增加,SMA/MMT纳米复合材料逐渐由插层型过渡到部分剥离.并且将原位聚合所得SMA/MMT纳米复合材料再次进行熔融插层后,可得到剥离效果更为明显的纳米复合材料.制得的SMA/MMT纳米复合材料具有较好的加工性能.  相似文献   

7.
尼龙1212/蒙脱土纳米复合材料的制备与性能研究   总被引:2,自引:0,他引:2  
通过插层聚合制备了尼龙1212/蒙脱土纳米复合材料,研究了反应条件、蒙脱土含量对复合材料性能的影响,并分析了原因。结果表明,聚合时加搅拌所制备复合材料的性能优于未加搅拌的,反应温度为240℃时复合材料的拉伸强度最高;蒙脱土含量为4%时,复合材料的拉伸强度达到最大值,比纯尼龙1212提高18.9%,蒙脱土含量为6%时,复合材料的缺口冲击强度最高,比纯尼龙1212提高21.3%。  相似文献   

8.
配位插层聚合法制备聚合物/蒙脱土纳米复合材料   总被引:2,自引:0,他引:2  
综述了用单体配位插层聚合法制备聚合物/蒙脱土纳米复合材料的特点、操作过程及研究现状.该方法是采用微波加热技术用阳离子交换树脂将天然蒙脱土层间交换上过渡金属离子,利用单体与过渡金属离子之间的配位作用将单体引入蒙脱土层间,然后进行原位聚合制备聚合物/蒙脱土纳米复合材料.  相似文献   

9.
采用原位插层聚合法,制备了蒙脱土含量较高的共聚酯/蒙脱土纳米复合材料,意在做母料使用,含有该母料的聚合物复合材料的染色性能、吸湿浸润性能、抗静电性能及抗紫外性能等都有所改善。阐述了合适的共聚酯/蒙脱土纳米复合材料的制备工艺,讨论了制备过程中的影响因素,结果发现:在采用酯交换-缩聚反应釜进行原位插层聚合制备共聚酯/蒙脱土纳米复合材料的过程中,蒙脱土在缩聚釜中加入更符合生产实际;缩聚反应的实际过程证明了蒙脱土中含有的金属离子对缩聚反应有催化作用;另外,控制聚合的最终温度不超过278℃。最后,对共聚酯/蒙脱土纳米复合材料的结构进行了表征。  相似文献   

10.
酚醛树脂/凹凸棒土纳米复合材料的制备与表征   总被引:1,自引:0,他引:1  
凹凸棒土(AT)经过提纯,在超声作用下分散在酚醛树脂(PF)溶液中,浇铸固化得到PF/AT纳米复合材料。用SEM、TEM、TGA、DMA等测试手段对所得复合材料性能进行表征。结果表明:AT的加入使酚醛树脂的韧性及耐热性有明显的提高,当AT质量分数为1%时,复合材料的拉伸强度达到最大值为45.86MPa,且复合材料的冲击强度由9.02kJ/m2提高到10.80kJ/m2。DMA结果表明:复合材料的储能模量较纯PF有显著提高,且当AT质量分数为2%时,玻璃化转变温度为230℃,比纯PF的高93℃。TGA表明:复合材料的分解温度较纯PF有所提高。  相似文献   

11.
An in situ polymerization was conducted in the presence of expanded graphite obtained by rapid heating of the graphite intercalation compound (GIC) to form a polymer/expanded graphite conducting composite. Study showed that the graphite was dispersed in the form of nanosheets in the polymer matrix. The transition from an electrical insulator to an electrical semiconductor for the composite occurred when the expanded graphite content was 1.8 wt %, which was much lower than that of conventional conducting polymer composite. The composite exhibited high electrical conductivity of 10−2 S/cm when the graphite content was 3.0 wt %. This great improvement of conductivity could be attributed to the high aspect ratio (width-to-thickness) of the graphite nanosheets. Study suggested that extensive rolling of the blend greatly affected the conductivity of the composite. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2506–2513, 2001  相似文献   

12.
Exfoliated polyvinyl acetate/montmorillonite nanocomposite (PVAc/MMT) was prepared via in situ emulsion polymerization. The resulting PVAc with various organophilic MMT contents was investigated. In the nanocomposite latex preparation, sodium lauryl sulfate (SLS), ammonium persulfate (APS), and poly (vinyl alcohol) (PVA) are used as anionic emulsifier, conventional anionic initiator, and stabilizer, respectively. The samples were characterized using elemental analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM). The XRD and AFM results demonstrate that the MMT well dispersed at molecular level in the PVAc matrix. Thermal properties of the nanocomposite were studied by using differential scanning calorimetric analysis (DSC). The exfoliated PVAc/MMT nanocomposite showed a higher glass transition temperature and a better thermal stability compared to the pure PVAc.  相似文献   

13.
通过原位聚合和混炼插层法制备了氢化丁腈橡胶(HNBR)/有机蒙脱土(OMMT)纳米复合材料,并对其结构、力学性能和耐热空气老化性能进行了研究。结果表明,有机蒙脱土以插层/剥离共存的结构分散在橡胶基体中。在178℃×96h的热空气老化条件下,HNBR/OMMT纳米复合材料的耐热空气老化性能优于高耐磨炭黑填充的HNBR复合材料。  相似文献   

14.
A novel montmorillonite (MMT)/polypyrrole (PPy) nanocomposite (MPN) with high electrical conductivity and thermal stability has been synthesized via in‐situ polymerization. The surface morphology, characterization, thermal stability, and electrical conductivity have been tested by scanning electron microscopy (SEM), Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), and four‐probe methods, respectively. SEM results show that the antenna‐like PPy deposits on the layer surface of MMT. FTIR and XRD analyses show that there is interaction between MMT and PPy. The nanocomposite has high electrical conductivity (4 S/cm), eight orders of magnitude higher than that of pristine MMT. The thermal stability of MPN is higher than the pure PPy as well as the mixture of MMT and PPy (MMP). POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Exfoliated polystyrene/organo-modified montmorillonite nanocomposite was synthesized through in situ free radical polymerization by dispersing a modified reactive organophilic montmorillonite layered silicate in styrene monomers. The original montmorillonite (MMT) was modified by a novel cationic surfactant. A cationic initiator, consisting of a quaternary ammonium salt moiety, α-phenyl chloro acetyl chloride moiety, and 9-decen-1-ol moiety, was intercalated into the interlayer spacing of the layered silicate. Modified MMT clays were then dispersed in styrene monomers and subsequently polymerized by a free-radical in situ polymerization reaction to yield polystyrene/montmorillonite nanocomposite. The structure of obtained modifier was investigated by proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared (FT-IR) spectroscopy. The exfoliating structure of nanocomposite was probed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Comparing with pure polystyrene, the nanocomposite showed much higher decomposition temperature and higher glass transition temperature (Tg).  相似文献   

16.
双螺杆反应挤出合成PA6/蒙脱土纳米纺丝切片   总被引:1,自引:0,他引:1  
采用己内酰胺作单体,通过双螺杆反应挤出的方法合成了PA6/蒙脱土纳米纺丝切片。设计了合理的螺杆组合方式,设定了双螺杆筒体温度,选择适当的螺杆转速,所得到的切片相对分子质量适当,分布较小,适宜纺制纤维。采用WAXD、DSC对切片进行分析表明,单体在蒙脱土硅酸盐片层中插层聚合。用该切片纺制成的纤维强度为5.35cN/dtex,伸长28.1%,模量52.42cN/dtex,比纯PA6有所提高。  相似文献   

17.
熔融插层法制备聚合物/蒙脱土纳米复合材料   总被引:1,自引:0,他引:1  
综述了熔融插层法制备聚合物,蒙脱土纳米复合材料的新进展。熔融插层法制备聚合物,蒙脱土纳米复合材料具有设备简单、无单体限制和不需要溶剂的优点,并从热力学角度探讨了熔融插层法制备聚合物,蒙脱土纳米复合材料的不足以及改进措施。  相似文献   

18.
Polyurethane/clay nanocomposites have been synthesized using Na+‐montmorillonite (Na+‐MMT)/amphiphilic urethane precursor (APU) chains that have hydrophilic polyethylene oxide (PEO) chains and hydrophobic segments at the same molecules. Nanocomposites were synthesized through two different crosslinking polymerization methods. One is UV curing of melt mixed APU/Na+‐MMT mixtures; the other is coalescence polymerization of APU/Na+‐MMT emulsions. These two kinds of composites had intercalated silicate layers of Na+‐montmorillonite by insertion of PEO chains in APU chains, which was confirmed by X‐ray diffraction measurement and transmission electron microscopy. These composite films also showed improved mechanical properties compared to pristine APU films. Although the two kinds of nanocomposites exhibited the same degree of intercalation and were synthesized based on the same precursor chains, these nanocomposite films had the different mechanical properties. Nanocomposites synthesized using APU/Na+‐MMT emulsions, having microphase‐separated structure, had greater tensile strength than those prepared with melt‐mixed APU/Na+‐MMT mixtures. Location of intercalated Na+‐MMT by PEO chains at the oil–water interface also could be confirmed by rheological behavior of the APU/Na+‐MMT/water mixture. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3130–3136, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号