首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A meta-analysis was conducted to compare the effects of feeding dairy cows conventional sorghum silage (CSS) or conventional corn silage (CCS) compared with brown midrib sorghum silage (BMRSS) diets on dry matter intake (DMI), milk production, and milk composition. Data from 9 published articles (1984 to 2015) were used to contrast diets with CSS (7 means comparisons; 104 cows) or CCS (13 means comparisons; 204 cows) versus BMRSS diets. Statistical analysis was performed using fixed or random effects models with the Metafor package of R (https://www.R-project.org). The degree of heterogeneity was measured with the I2 statistic, and publication bias was determined with funnel plots and Egger's regression test. Other sources of heterogeneity of response were analyzed through meta-regression. Estimated effect size was calculated for DMI, milk production, and milk composition. No evidence of publication bias was observed for any variable tested. The highest degree of heterogeneity (I2 = 41.5 and 72.6%) was observed for DMI among dependent variables tested in both comparisons, indicating that intake responses to silage type are rather inconsistent; in contrast, milk production had the lowest degree of heterogeneity (I2 = 0%), supporting the idea that the responses of this variable to silage type were very consistent across studies. Compared with BMRSS diets, cows fed CSS diets exhibited decreased milk production (1.64 kg/d), milk fat concentration (0.09%), milk fat yield (0.08 kg/d), milk protein yield (0.04 kg/d), and milk lactose yield (0.16 kg/d) and tended to decrease DMI (0.83 kg/d). Compared with CCS diets, cows fed BMRSS diets increased milk fat concentration (0.10%), but decreased milk protein concentration (0.06%) and tended to increase lactose yield (0.08 kg/d). Meta-regression indicated that days in milk affected DMI and milk production when CSS diets were compared with BMRSS diets, and DMI when CCS diets were compared with BMRSS diets. Additionally, the inclusion rate of silage in the diet and dietary neutral detergent fiber affected yields of milk fat and lactose, respectively, when CCS and BMRSS diets were compared. Overall, lactation performance improved when cows were fed diets formulated with BMRSS compared with CSS, but performance was not different for cows fed BMRSS and CCS diets. However, the small sample size may have influenced these results by increasing the margin of the error and, concurrently, the power of the meta-analysis. Results of this analysis suggest that additional research is needed to explore the effects of days in milk and the inclusion rates of silages in the diets when comparing BMRSS with CSS or CCS.  相似文献   

2.
《Journal of dairy science》2017,100(7):5250-5265
Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows.  相似文献   

3.
Eight intact multiparous cows and four ruminally and duodenally cannulated primiparous cows were fed four diets in a replicated 4 x 4 Latin square design: 1) 17% forage neutral detergent fiber (NDF) with brown midrib corn silage (BMRCS), 2) 21% forage NDF with BMRCS, 3) 17% forage NDF with conventional corn silage (CCS), and 4) 21% forage NDF with CCS. Diets contained 17.4% crude protein and 38.5% NDF. Each period consisted of 4 wk for intact cows and 2 wk for cannulated cows. For intact cows, DM intake was higher for BMRCS than CCS, and milk urea N was higher for 21 than 17% forage NDF. Milk protein yield tended to be higher and milk urea N lower for cows fed BMRCS than those fed CCS. Milk yield and milk protein percentage were similar among treatments. For the cannulated cows, ruminal mat consistency was similar among treatments. Based on a 72 h in situ incubation, BMRCS was lower in indigestible NDF than CCS. The BMRCS resulted in a higher proportion of ruminal propionate than CCS. Cows fed 21% forage NDF had a higher proportion of acetate and a lower proportion of propionate than cows fed 17% forage NDF. The total tract digestibility of nutrients and efficiency of bacterial N synthesis were similar among treatments, except that BMRCS resulted in lower intestinal fatty acid digestibility than CCS, and 17% forage NDF tended to result in higher total tract fatty acid digestibility than 21% forage NDF. Ruminal NDF digestibility was similar among dietary treatments. The increased milk production observed from feeding BMRCS in some studies may be explained by higher DM intake rather than increased total tract digestibility of the diets.  相似文献   

4.
Interactions of endosperm type of corn grain and the brown midrib 3 (bm3) mutation in corn silage on ruminal kinetics and site of nutrient digestion of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Interactions of treatments were not observed for any measure of digestibility, but digestion kinetics of starch and fiber did interact to affect digestible organic matter intake by affecting dry matter intake. Rate of ruminal starch digestion was faster and rate of ruminal starch passage tended to be slower in diets containing corn grain with floury vs. vitreous endosperm, resulting in a mean increase of 22 units for ruminal starch digestibility. Although compensatory postruminal starch digestion decreased differences among treatments for total tract starch digestibility, starch entering the duodenum was more digestible for grain with floury endosperm compared with vitreous grain, resulting in greater total tract starch digestibility for floury compared with vitreous corn grain. Fermentation rate of potentially digestible NDF was not affected by either bm3 corn silage or greater ruminal starch digestion of floury grain. Brown midrib corn silage increased total tract NDF digestibility vs. control silage by numerically increasing ruminal and postruminal digestibility of NDF. Endosperm type of corn grain greatly influences site of starch digestion and should be considered when formulating diets.  相似文献   

5.
A brown midrib (BMR) hybrid and a silage-specific non-BMR (7511FQ) hybrid were harvested at a normal cut height leaving 10 to 15 cm of stalk in the field. The non-BMR hybrid was also cut at a greater height leaving 45 to 50 cm of stalk. Cutting high increased the concentrations of dry matter (+4%), crude protein (+5%), net energy for lactation (+3%), and starch (+7%), but decreased the concentrations of acid detergent fiber (−9%), neutral detergent fiber (−8%), and acid detergent lignin (−13%) for 7511FQ. As expected, the BMR corn silage was 30% lower in lignin concentration than 7511FQ. After 30 h of in vitro ruminal fermentation, the digestibility of neutral detergent fiber for normal cut 7511FQ, the same hybrid cut high, and the normal cut BMR hybrid were 51.7, 51.4, and 63.5%, respectively. Twenty-seven multiparous lactating cows were fed a total mixed ration composed of the respective silages (45% of dry matter) with alfalfa haylage (5%), alfalfa hay (5%), and concentrate (45%) (to make the TMR isocaloric and isonitrogenous) in a study with a 3 × 3 Latin square design with 21-d periods. Milk production was greater for cows fed the BMR hybrid (48.8 kg/d) compared with those fed the normal cut 7511FQ (46.8 kg/d) or cut high (47.7 kg/d). Dry matter intake was not affected by treatment. Feed efficiency for cows fed the BMR silage (1.83) was greater than for those fed high-cut 7511FQ (1.75), but was not different from cows fed the normal cut 7511FQ (1.77). Cows fed the BMR silage had milk with greater concentrations of lactose but lower milk urea nitrogen than cows on other treatments. Harvesting a silage-specific, non-BMR corn hybrid at a high harvest height improved its nutritive content, but the improvement in feeding value was not equivalent to that found when cows were fed BMR corn silage.  相似文献   

6.
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM.  相似文献   

7.
Total mixed rations containing brown midrib sorghum-sudangrass silage (bmrSS) or corn silage (CS) at either 35 or 45% of dietary dry matter were fed to Holstein dairy cows to determine the effect on lactational performance and nutrient digestibility. Twelve cows were assigned to 1 of 4 diets in replicated 4 × 4 Latin squares with 21-d periods. In vitro 30-h neutral detergent fiber digestion, measured before the start of the trial, was 46.0% for CS and 58.3% for bmrSS. Dry matter intake was greatest when cows were fed the 35% CS (23.4 kg/d) and 45% CS (23.2 kg/d) diets, was least when cows were fed the 45% bmrSS diet (17.6 kg/d), and was intermediate when cows were fed the 35% bmrSS diet (20.1 kg/d). The bmrSS diets resulted in greater body weight gain per 21-d period but similar body condition scores compared with the CS diets. Yield of solids-corrected milk (SCM) was similar among the diets. Efficiency (SCM:dry matter intake) was 28% greater for cows fed the bmrSS than those fed the CS diets. In vivo digestibilities of organic matter and crude protein were greater for the CS diets than the bmrSS diets, but total tract digestibilities of neutral detergent fiber and starch were similar among diets. Ruminal pH was greater when cows were fed the 45% bmrSS diet (6.58), was least when cows were fed the 35% CS (6.10) and 45% CS diets (6.13), and was intermediate when cows were fed the 35% bmrSS diet (6.42). The ratio of acetate to propionate was greater for the bmrSS diets (2.77) than for the CS diets (2.41), with no difference among diets in total volatile fatty acid concentrations (122 mM). In conclusion, cows fed bmrSS had greater efficiency of SCM production, higher ruminal pH, and greater acetate to propionate ratios than cows fed CS. With these diets fed in a short-term study, bmrSS appeared to be an effective alternative to the CS hybrid when fed at either 35 or 45% of dietary dry matter.  相似文献   

8.
The objective of this study was to examine the effects of feeding conventional corn silage (CCS) or brown midrib corn silage (BMCS) to dairy cows on CH4 emissions from stored manure. Eight lactating cows were fed (ad libitum) a total mixed ration (forage:concentrate ratio 65:35; dry matter basis) containing 59% (dry matter basis) of either CCS or BMCS. Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the incubation period. The total amount of feces and urine excreted was higher for cows fed BMCS than for cows fed CCS [8.6 vs. 6.5 kg/d of volatile solids (VS)]. Manure from cows fed BMCS emitted more CH4 than manure from cows fed CCS (173 vs. 146 L/kg of VS) throughout the incubation period. Similarly, VS and neutral detergent fiber losses throughout incubation were higher for manure from cows fed BMCS versus cows fed CCS (37.6 vs. 30.6% and 46.2 vs. 31.2%, respectively). Manure NH3 concentration (79% of total manure N) was not affected by corn silage cultivar. Results of this study show that using a more digestible corn silage cultivar (BMCS vs. CCS) may increase the contribution of manure to CH4 emissions, and may offset gain achieved by reducing enteric CH4 emissions.  相似文献   

9.
Forty Holstein cows were used in an 8-wk randomized trial to evaluate the effects of feeding combinations of forages with improved fiber digestibility on performance during early lactation. Treatments were arranged as a 2 × 2 factorial to include silage from normal (NCS) or brown midrib (BMR) corn silage with or without 10% Tifton 85 bermudagrass hay (T85). In a simultaneous digestion trial, degradation and passage kinetics and ruminal fermentation parameters were evaluated in a 4 × 4 Latin square design trial using late-lactation Holstein cows fitted with ruminal cannulas. Dry matter intake (DMI) and neutral detergent fiber (NDF) intake were greater with BMR than with NCS; however, milk yield and composition were similar among corn silage types. Inclusion of T85 reduced milk yield but supported higher milk fat percentage, resulting in similar yields of energy-corrected milk. Blood glucose concentrations were higher for BMR compared with NCS, and inclusion of T85 increased blood urea N concentrations. Treatments did not alter liquid or solid phase passage rates or rumen turnover. Corn silage type did not affect ruminal pH or volatile fatty acid concentrations, but inclusion of T85 increased pH and molar proportion of acetate but decreased butyrate. Molar proportions of propionate were greater for NCS and T85 compared with BMR and T85, resulting in an interaction. Results of this trial indicate that combinations of forages with improved fiber digestibility can be used to support intake and performance of cows during early lactation.  相似文献   

10.
We studied the effects of mechanical processing and type of hybrid on the nutritive value of corn silage for lactating cows. Treatments were brown midrib (BMR) corn silage that was unprocessed (U-BMR), BMR corn silage that was processed (P-BMR), and a conventional corn silage that was processed (P-7511). All silages were harvested at a theoretical chop length of 19 mm. The chemical compositions of the silages were similar among treatments except that BMR silages were lower in lignin and higher in protein than P-7511. Brown midrib silages had greater 30-h in situ and in vitro NDF digestion than did P-7511, and processing had no effect on 30-h in situ and in vitro fiber digestion, but it increased in situ starch digestion after 3 and 12 h of incubation. Both processed silages had a smaller proportion of particles >1.91 cm and fewer whole corn kernels compared with unprocessed silage. Lactating cows were fed a total mixed ration (TMR) consisting of 42% of each silage type, 40% concentrate, 10% alfalfa silage, and 8% alfalfa hay (DM basis). Cows fed TMR containing P-BMR ate more DM and produced more milk than cows fed P-7511. At feeding, the TMR containing U-BMR had a larger proportion of particles >1.91 cm when compared with the TMR of cows fed processed silages, and after 24 h the difference was even greater, indicating that cows fed unprocessed corn silage sorted more. Cows fed TMR with P-7511 and P-BMR had greater total tract digestibility of organic matter, crude protein, and starch compared with cows fed U-BMR. In vivo digestibility of neutral detergent fiber was greatest for cows fed P-BMR when compared with the other treatments.  相似文献   

11.
Mechanical processing of whole crop barley before ensiling may be useful for improving nutrient use by dairy cattle. The objective of this study was to assess the effects of feeding mechanically processed barley silage as the main forage source on lactational performance. Twenty-four Holstein cows, 16 primiparous (187 +/- 52 days in milk) and 8 multiparous (87 +/- 69 days in milk) cows, were used in a completely randomized design with a 2-wk covariate period and a 6-wk treatment period. The 2 treatments were: 1) total mixed ration (TMR) containing regular barley silage (RBS-TMR), and 2) TMR containing mechanically processed barley silage (MPBS-TMR). Barley silage and alfalfa hay supplied 41 and 5% of the dietary dry matter (DM), respectively. Intake, body weight, and milk production were measured during the covariate and treatment periods. In addition, 2 multiparous cows were used for in situ measurements of the ruminal DM and fiber degradation kinetics of the barley silages and TMR. Data were analyzed with repeated measurements using a mixed model that included the covariate adjustment. Feeding MPBS-TMR had no significant effects on DM intake (DMI; 21.7 kg/d), milk yield (33.9 kg/d), or milk composition, with only 4% FCM (fat-corrected milk) yield (29.7 vs. 31.7 kg/d) and milk fat concentration (3.30 vs. 3.57%) showing a numerical improvement. Apparent digestibilities of DM and nutrients were not affected by feeding MPBS-TMR, with the exception of starch digestibility, which tended to increase. Dairy efficiencies calculated as milk yield/DMI or FCM/DMI were not different between treatments. Body weight and body condition score were not affected by treatments. Effective ruminal degradability of DM was similar for both barley silages, indicating that when the silages were ground to remove the effects of mechanical processing, the potential digestion was similar. Mechanical processing of barley silage harvested at a mid-dough stage of maturity resulted in small improvements in its nutritive value for lactating dairy cows and had minor impact on digestibility and milk production.  相似文献   

12.
Chemical treatment may improve the nutritional value of corn crop residues, commonly referred to as corn stover, and the potential use of this feed resource for ruminants, including lactating dairy cows. The objective of this study was to determine the effect of prestorage chopping, hydration, and treatment of corn stover with Ca(OH)2 on the feeding value for milk production, milk composition, and dry matter intake (DMI). Multiparous mid-lactation Holstein cows (n = 30) were stratified by parity and milk production and randomly assigned to 1 of 3 diets. Corn stover was chopped, hydrated, and treated with 6% Ca(OH)2 (as-fed basis) and stored in horizontal silo bags. Cows received a control (CON) total mixed ration (TMR) or a TMR in which a mixture of treated corn stover and distillers grains replaced either alfalfa haylage (AHsub) or alfalfa haylage and an additional portion of corn silage (AH+CSsub). Treated corn stover was fed in a TMR at 0, 15, and 30% of the diet DM for the CON, AHsub, and AH+CSsub diets, respectively. Cows were individually fed in tiestalls for 10 wk. Milk production was not altered by treatment. Compared with the CON diet, DMI was reduced when the AHsub diet was fed and tended to be reduced when cows were fed the AH+CSsub diet (25.9, 22.7, and 23.1 ± 0.88 kg/d for CON, AHsub, and AH+CSsub diets, respectively). Energy-corrected milk production per unit of DMI (kg/kg) tended to increase with treated corn stover feeding. Milk composition, energy-corrected milk production, and energy-corrected milk per unit of DMI (kg/kg) were not different among treatments for the 10-wk feeding period. Cows fed the AHsub and AH+CSsub diets had consistent DMI over the 10-wk treatment period, whereas DMI for cows fed the CON diet increased slightly over time. Milk production was not affected by the duration of feeding. These data indicate that corn stover processing, prestorage hydration, and treatment with calcium hydroxide can serve as an alternative to traditional haycrop and corn silage in diets fed to mid-lactation dairy cows.  相似文献   

13.
《Journal of dairy science》2022,105(7):5776-5785
Sorghum forage is an important alternative to high-quality forage in regions where climatic and soil conditions are less desirable for corn production for silage and producing comparable nutritive value is challenging. The objective of this experiment was to assess the effects of season (spring vs. summer), sorghum variety type (forage sorghum vs. sorghum-sudangrass), and trait [brown midrib (BMR) vs. non-BMR] on dry matter (DM) yield, nutrient composition, and predicted intake and milk yield of whole-plant sorghum forage grown in Florida from 2008 to 2019. Whole-plant sorghum forage was harvested at a targeted 32% of DM, and each year, spring (April) and summer (July) trials were established. A total of 300 forage sorghum and 137 sorghum-sudangrass hybrids were tested for a total of 437 hybrids, of which 199 hybrids contained the BMR trait and 238 were non-BMR. An interaction between season and sorghum variety type was observed for DM yield. Dry matter yield was greater for the spring season than the summer season, with sorghum-sudangrass outperforming forage sorghum only during the spring season. In addition, BMR hybrids had a lower DM yield than non-BMR hybrids, regardless of season and variety type. An interaction between season and trait was observed for predicted neutral detergent fiber digestibility after 30 h of incubation in rumen fluid (NDFD30h). Predicted NDFD30h was greater for BMR sorghum in comparison to non-BMR sorghum, but BMR sorghum had slightly greater predicted NDFD30h when grown in the spring than summer, whereas no seasonal differences were found for predicted NDFD30h across non-BMR sorghum. An interaction between season, variety type, and trait was observed for predicted dry matter intake at 45 (DMI45), 55 (DMI55), and 65 (DMI65) kg of milk/d. Predicted DMI45 and DMI55 were greater for spring BMR forage sorghum than for spring and summer non-BMR sorghum-sudangrass and were greater for spring BMR forage sorghum than for summer BMR sorghum-sudangrass. Predicted DMI65 was greater for BMR forage sorghum in comparison to all non-BMR hybrids in the spring. Additionally, spring BMR forage sorghum was greater than summer sorghum-sudangrass regardless of trait. An interaction between season and sorghum variety type was observed for milk yield per megagram of forage. Milk yield per megagram of forage was greatest for spring forage sorghum. Sorghum variety type and trait selection are crucial to minimize differences in forage nutritive value of sorghum forage between seasons and improve the performance of high-producing dairy cows.  相似文献   

14.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on ruminal fermentation and microbial efficiency of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber and 30% starch. Increasing ruminal starch digestibility by replacing vitreous corn grain with floury grain reduced mean and minimum ruminal pH. Brown midrib 3 corn silage reduced mean and minimum ruminal pH and increased total volatile fatty acid concentration. Ruminal pH was positively associated with rate of valerate absorption. Although floury endosperm reduced acetate:propionate ratio in both control and bm3 corn silage diets, it had a greater effect on reducing acetate:propionate ratio for control silage compared with bm3 corn silage. Nonammonia N flow to the duodenum did not differ among treatments and no effects of treatment were detected for microbial N and nonammonia, nonmicrobial N flow. Although treatment effects on ruminal fermentation and ruminal pH were observed, few interactions of treatment were detected and treatments did not affect flow of N fractions to the intestines.  相似文献   

15.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on feeding behavior, productivity, energy balance, and plasma metabolites of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous), and corn silage type (bm3 or isogenic control). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Floury endosperm grain decreased dry matter intake (DMI) 1.9 kg/ d compared with vitreous grain when combined with control corn silage but did not affect DMI when combined with bm3 corn silage. This interaction of treatments occurred because of changes in meal size; floury endosperm grain decreased meal size in control silage diets but increased meal size in bm3 corn silage diets. Ruminal pool sizes reflected DMI differences among diets, suggesting that ruminal fill was not the primary limitation on intake. Brown midrib 3 corn silage reduced rumination time per day and number of rumination bouts per day. Floury endosperm grain decreased 3.5% fat-corrected milk by 1.2 kg/d when combined with control silage but increased 3.5% fat-corrected milk by 2.1 kg/d when combined with bm3 corn silage. Starch and fiber digestibility interact to affect feeding behavior and milk production and production response to bm3 corn silage depends on the grain source that is fed.  相似文献   

16.
The mixture of kura clover (Trifolium ambiguum M. Bieb.) and reed canarygrass (Phalaris arundinacea L.) has proven to be extremely persistent in the northern United States, but information about dairy cow performance on this mixture is lacking. Twenty lactating Holstein cows were used in a crossover design to compare dry matter (DM) intake and milk production from diets containing kura clover-reed canarygrass silage (KRS) or alfalfa (Medicago sativa L.) silage (AS). Forages were cut, wilted, ensiled in horizontal plastic bags, and allowed to ferment for at least 50 d before beginning the feeding experiment. The KRS was approximately 40% kura clover and 60% reed canarygrass. Treatments were total mixed rations formulated with either 57% of total DM from 1) AS or 2) KRS. Experimental periods were 28 d, with the first 14 d for diet adaptation and the last 14 d for measurement of intake and milk production. The neutral detergent fiber (NDF) concentrations of AS and KRS were 37.3 and 47.3%, respectively. The fermentation analyses indicated that both silages underwent a restricted fermentation, producing primarily lactic acid and some acetic acid. Dry matter intake (24.2 vs. 22.8 kg) and 4% fat-corrected milk (32.8 vs. 30.9 kg) were significantly higher for cows fed AS than for cows fed KRS. Cows consumed less NDF (6.7 vs. 8.0 kg) and less digestible NDF (3.0 vs. 4.4 kg) when fed AS diets compared with KRS diets, but the pool of ruminally undegraded NDF was similar (3.7 kg) between diets. Cows produced 1.5 kg of milk/kg of DM consumed regardless of the diet, indicating that digestible NDF of KRS was utilized with similar efficiency as the cell wall constituents of AS, but the intake of cows fed KRS may have been limited by rumen fill. Milk fat concentration tended to be higher for cows fed AS, but the milk true protein concentration and yields of fat and protein did not differ by treatment. Milk urea nitrogen content was higher when cows consumed AS (16.4 mg/ dL) compared with KRS (13.4 mg/dL). The cows fed KRS consumed more NDF but less total DMI, based on the results from this trial with diets formulated to contain approximately 60% of DM as forage, resulting in slightly lower milk yields than cows fed excellent-quality AS. This grass-legume mixture has the potential to be a source of quality forage for dairy cows in regions where alfalfa persistence is a problem.  相似文献   

17.
The objectives of this study were to evaluate the effects of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on feed intake, diet digestibility, N partitioning, urinary excretion of purine derivatives, and milk production in dairy cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of a 13-d adaptation phase followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with targeted proportions of RCS-to-maize silage of 15:60 (RCS15), 30:45 (RCS30), 45:30 (RCS45), and 60:15 (RCS60) on a dry matter (DM) basis. Increasing the proportion of RCS plus wheat in the diet decreased linearly the intake of DM from 22.4 to 19.8 kg/d, and of organic matter from 21.1 to 18.1 kg/d. The apparent total tract digestibility (ATTD) of DM and organic matter did not differ across diets and averaged 68.4 and 70.5%, respectively. However, ATTD of N decreased linearly from 68.5 to 63.2%, whereas ATTD of neutral detergent fiber and acid detergent fiber increased linearly from 50.4 to 59.6% and from 48.4 to 57.7%, respectively, when increasing the proportion of RCS plus wheat. Fecal N excretion increased from 31.6 (RCS15) to 37.2% (RCS60) of N intake, whereas urinary N excretion was the lowest (32.8% of N intake) with RCS45. Hence, N efficiency (milk N/N intake) decreased linearly with incremental levels of RCS plus wheat, being the lowest when feeding RCS60 (25.4%), probably due to increased nonprotein N proportion in total dietary N. Urinary excretion of purine derivatives decreased linearly from 378 to 339 mmol/d, which suggests that increasing levels of RCS plus wheat reduced the microbial crude protein flow at the duodenum. Milk yield and milk protein concentration declined linearly from 35.9 to 30.2 kg/d and from 3.20 to 3.01%, respectively, when increasing the proportion of RCS plus wheat. In conclusion, caution should be taken before introducing high levels of RCS plus wheat in diets of high-yielding dairy cows. However, RCS plus wheat can be included up to 30% of the dairy cow diet (DM basis) without a reduction in lactation performance.  相似文献   

18.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

19.
Total mixed rations containing corn silage (CS) or forage sorghum silage (SS) were fed to mid-lactation Holstein cows to determine the effects on feed intake, lactation performance, milk composition and fatty acid profile, nutrient digestibility, blood metabolites, rumen microbial N synthesis, and antioxidant status. The experiment was designed as a 2-period change-over (two 28-d periods) trial with 2 diets including CS diet or SS diet and 12 cows. Total replacement of CS with SS had no significant influence on dry matter intake. Substituting CS with SS had no effect on milk production, feed efficiency, and milk concentrations of fat, protein, lactose, and solids-not-fat, whereas yields of milk fat, protein, and lactose were greater for cows fed the CS diet. Blood parameters including glucose, albumin, cholesterol, triglyceride, total protein, urea N, and fatty acids were not affected by the dietary treatments. Apparent digestibility coefficients of dry matter, organic matter, crude protein, ether extract, neutral detergent fiber, and acid detergent fiber were not significantly influenced by the diets. Replacing CS with SS had no effect on total saturated fatty acids and total monounsaturated fatty acids, whereas total polyunsaturated fatty acid percentage was greater with the SS diet. Proportions of C20:0, C18:3n-3, and C18:3n-6 were affected by feeding SS. Cows fed CS had a greater amount of urinary purine derivatives. Feeding SS had a positive effect on total antioxidant capacity of blood and milk. In conclusion, SS can be fed to lactating Holstein cows as a total replacement for CS without undesirable effects on animal performance, but with positive effects on antioxidant capacity and polyunsaturated fatty acids of milk. This forage can be an excellent choice for dairy farms in areas where cultivation of corn is difficult due to water shortage.  相似文献   

20.
Two corn varieties predicted to differ in digestibility were harvested at 2 cutting heights (10.2 or 30.5 cm) to determine effects on the nutrient content of the resulting silage, nutrient intake, nutrient digestibility, and production of lactating cows fed such corn silage originally harvested at two-thirds milk line. Acid detergent fiber (ADF) concentration was higher and in vitro true dry matter (DM) digestibility (IVTDMD) was lower for the variety predicted to have average digestibility. An interaction was observed between variety and cutting height because of decreased ADF and increased IVTDMD for the average digestibility variety cut at 30.5 vs. 10.2 cm; no differences were observed for the higher digestibility variety at each cutting height. When silages were fed to 32 Holstein cows in a 5-wk randomized design trial, DM intake, milk yield, and milk composition were similar. There was an interaction between variety and cutting height for DM intake and total tract apparent digestibility of DM, crude protein, and neutral detergent fiber because of lower intake and digestibility for the diets containing either the high cut, average quality variety or low cut, higher quality variety. These results suggest that increasing the cutting height to 30.5 cm does not improve silage quality or improve milk yield of cows. Although the 2 varieties selected for this trial were predicted to differ in digestibility, these differences were not great enough to influence milk yield or composition of lactating cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号