首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symmetry of magnetic quantum tunneling (MQT) in the single molecule magnet Mn2-acetate has been determined by sensitive low-temperature magnetic measurements in the pure quantum tunneling regime and high frequency EPR spectroscopy in the presence of large transverse magnetic fields. The combined data set definitely establishes the transverse anisotropy terms responsible for the low temperature quantum dynamics. MQT is due to a disorder induced locally varying quadratic transverse anisotropy associated with rhombic distortions in the molecular environment (2nd order in the spin-operators). This is superimposed on a 4th order transverse magnetic anisotropy consistent with the global (average) S4 molecule site symmetry. These forms of the transverse anisotropy are incommensurate, leading to a complex interplay between local and global symmetries, the consequences of which are analyzed in detail. The resulting model explains: (1) the observation of a twofold symmetry of MQT as a function of the angle of the transverse magnetic field when a subset of molecules in a single crystal are studied; (2) the non-monotonic dependence of the tunneling probability on the magnitude of the transverse magnetic field, which is ascribed to an interference (Berry phase)effect; and (3) the angular dependence of EPR absorption peaks, including the fine structure in the peaks, among many other phenomena. This work also establishes the magnitude of the 2nd and 4th order transverse anisotropy terms for Mn12-acetate single crystals and the angle between the hard magnetic anisotropy axes of these terms. EPR as a function of the angle of the field with respect to the easy axes (close to the hard-medium plane) confirms that there are discrete tilts of the molecular magnetic easy axis from the global (average) easy axis of a crystal, also associated with solvent disorder. The latter observation provides a very plausible explanation for the lack of MQT selection rules, which has been a puzzle for many years.  相似文献   

2.
The low temperature resistivity and magnetoresistance of bulk samples of La1−x K x MnO3 has been investigated between 10 K and 300 K with and without the magnetic field (H=0·8 T). All the samples show metal-insulator transitions with Curie temperature (T C) ranging between 260 K and 309 K. At temperature below 60 K, the K-doped manganites exhibit a shallow minimum, which disappears under an applied field of 0·8 T. This field dependent minimum in resistivity, observed in K-doped lanthanum manganites is explained in the light of intergrain tunneling of the charge carriers between anti-ferromagnetically coupled grains of the polycrystalline samples. The field variation of magnetoresistance below T C follows a phenomenological model which considers spin polarized tunneling at the grain boundaries. The intergranular contribution to the magnetoresistance is separated out from that due to spin polarized tunneling part at the grain boundaries. The temperature dependence of intrinsic contribution to the magnetoresistance follows the prediction of the double exchange model for all values of field at T<T C.  相似文献   

3.
It is shown that spin-polarized currents occur in metallic and ferromagnetic Ga1–x Mn x As/GaAs multilayered structures, as a result of the magnetic interaction between holes and the Mn ions. The magnetic layers act as potential barriers for holes with spins aligned parallel to the layer magnetization, and as potential wells for the inverse spin polarization. In the case of currents in-plane, holes with spin parallel and antiparallel to this magnetization move in different regions. By choosing properly the magnetic and the nonmagnetic layers widths, a spin-polarized transport with a difference of an order of magnitude on the mobilities for each spin polarization is predicted to occur. Spin-polarized minibands are also shown to occur in a superlattice based on the same structure. We calculated the dependence of the spin polarization with the superlattice parameters, and we discuss how this polarization affects the Bloch miniband transport in such ferromagnetic superlattice.  相似文献   

4.
Electronic and magnetic coupling across the interface between a ferromagnetic La2-xBaxMnO4 (“ colossal magnetoresistance” CMR) layer and a La1.85Ba0.15CuO4 (high-temperature superconductor) layer are studied in a self-consistent virtual crystal approximation using the local spin density functional approach. The manganite material dopes the first cuprate layer, with holes ifx = 2/3 and with electrons if x = 0. Forx near the CMR regime the ferromagnetic manganite slab should be half-metallic. Such multilayer systems may be useful as magnetic field-controlled current switches, or as a relatively high-temperature superconducting material with small critical field.  相似文献   

5.
In order to achieve highly efficient spin polarized transport, first of all magnetocrystalline anisotropy energy, which determines the magnetic easy axis, must be understood. The highly precise full-potential linearized augmented plane-wave method is employed to investigate the magnetism and magnetocrystalline anisotropy energy of a ferromagnetic Heusler alloy Fe3Si on Si(001) and Si(111) substrates. The calculated magnetocrystalline anisotropy energy of bulk D03 Fe3Si was found to depend sensitively on a tetragonal distortion: The magnetization is along the z-axis at c/a < 1 and on the xy plane at c/a > 1. The out-of-plane magnetic easy axis of both Fe3Si/Si(001) and (111) was calculated to be quite stable with enhanced magnetocrystalline anisotropy energy compared with bulk value. The magnetic easy axis of Fe3Si/Si(001) and (111) is discussed in detail with single particle energy spectra. The degree of spin polarization is also presented at the interfaces between Fe3Si and Si. The calculated spin polarizations of Fe3Si/Si(111) tend to retain the spin polarization of the bulk, whereas they are reduced for the (001) interfaces.  相似文献   

6.
Magnetic van der Waals (vdW) materials are the centerpiece of atomically thin devices with spintronic and optoelectronic functions. Exploring new chemistry paths to tune their magnetic and optical properties enables significant progress in fabricating heterostructures and ultracompact devices by mechanical exfoliation. The key parameter to sustain ferromagnetism in 2D is magnetic anisotropy—a tendency of spins to align in a certain crystallographic direction known as easy‐axis. In layered materials, two limits of easy‐axis are in‐plane (XY) and out‐of‐plane (Ising). Light polarization and the helicity of topological states can couple to magnetic anisotropy with promising photoluminescence or spin‐orbitronic functions. Here, a unique experiment is designed to control the easy‐axis, the magnetic transition temperature, and the optical gap simultaneously in a series of CrCl3?xBrx crystals between CrCl3 with XY and CrBr3 with Ising anisotropy. The easy‐axis is controlled between the two limits by varying spin–orbit coupling with the Br content in CrCl3?x Brx. The optical gap, magnetic transition temperature, and interlayer spacing are all tuned linearly with x. This is the first report of controlling exchange anisotropy in a layered crystal and the first unveiling of mixed halide chemistry as a powerful technique to produce functional materials for spintronic devices.  相似文献   

7.
We review our recent works on the vortex state in p-wave superconductors. First, in a magnetic field parallel to the c-axis, the square vortex lattice is most stable, except in the immediate vicinity of T = T c0. Second, the effect of impurities on H c2 is studied, which exhibits characteristics of unconventional superconductors. Finally, the ab anisotropy in the upper critical field in a magnetic field is considered. This anisotropy provides important information about the fourfold term arising from the Fermi surface effect.  相似文献   

8.
Tunneling junction is used in many devices such as high‐frequency oscillators, nonvolatile memories, and magnetic field sensors. In these devices, modulation on the barrier width and/or height is usually realized by electric field or magnetic field. Here, a new piezotronic tunneling junction (PTJ) principle, in which the quantum tunneling is controlled/tuned by externally applied mechanical stimuli, is proposed. In these metal/insulator/piezoelectric semiconductor PTJs, such as Pt/Al2O3/p‐GaN, the height and the width of the tunneling barriers can be mechanically modulated via the piezotronic effect. The tunneling current characteristics of PTJs exhibit critical behavior as a function of external mechanical stimuli, which results in high sensitivity (≈5.59 mV MPa?1), giant switching (>105), and fast response (≈4.38 ms). Moreover, the mechanical controlling of tunneling transport in PTJs with various thickness of Al2O3 is systematically investigated. The high performance observed with these metal/insulator/piezoelectric semiconductor PTJs suggest their great potential in electromechanical technology. This study not only demonstrates dynamic mechanical controlling of quantum tunneling, but also paves a way for adaptive interaction between quantum tunneling and mechanical stimuli, with potential applications in the field of ultrasensitive press sensor, human–machine interface, and artificial intelligence.  相似文献   

9.
Current-voltage characteristics of high-critical-current Bi2Sr2CaCu2O10/Ag ribbons were measured using both transport and magnetization techniques. The slope of these curves changes with magnetic field and temperature in a way very similar to the observedj c (H, T) behavior. This correspondence between the critical current and the slope of theI–V characteristics can be explained within the thermally activated flux creep framework. The dependence ofj c on the angle between field and ribbon is compared to the existing intrinsic anisotropy models.  相似文献   

10.
Anisotropy flux jumps in the mixed state of a textured (Nd0.33Eu0.33Gd0.33)Ba2Cu3O7-δ bulk superconductor with Gd-211 doping particles have been studied by means of magnetization measurements in the model of the magnetic field paralleling and perpendicular to the c axis. A typical anisotropy flux jump was observed at a temperature ranging from 2.0 to 3.0 K. Under the magnetic field perpendicular to c axis, no flux jump was found at whole temperature range until the sweep rate of 200 Oe/sec. For the magnetic field paralleling to the c axis, the number of flux jumps decreased with the increase of temperature, and the third quadrant of the MH curve is the most flux-instability quadrant. The magnetic field sweep rate dependences of flux jumps were also studied and the influence of flux creep on flux jumps was also discussed.  相似文献   

11.
Electric field (E‐field) modulation of perpendicular magnetic anisotropy (PMA) switching, in an energy‐efficient manner, is of great potential to realize magnetoelectric (ME) memories and other ME devices. Voltage control of the spin‐reorientation transition (SRT) that allows the magnetic moment rotating between the out‐of‐plane and the in‐plane direction is thereby crucial. In this work, a remarkable magnetic anisotropy field change up to 1572 Oe is achieved under a small operation voltage of 4 V through ionic liquid (IL) gating control of SRT in Au/[DEME]+[TFSI]?/Pt/(Co/Pt)2/Ta capacitor heterostructures at room temperature, corresponding to a large ME coefficient of 378 Oe V?1. As revealed by both ferromagnetic resonance measurements and magnetic domain evolution observation, the magnetization can be switched stably and reversibly between the out‐of‐plane and in‐plane directions via IL gating. The key mechanism, revealed by the first‐principles calculation, is that the IL gating process influences the interfacial spin–orbital coupling as well as net Rashba magnetic field between the Co and Pt layers, resulting in the modulation of the SRT and in‐plane/out‐of‐plane magnetization switching. This work demonstrates a unique IL‐gated PMA with large ME tunability and paves a way toward IL gating spintronic/electronic devices such as voltage tunable PMA memories.  相似文献   

12.
The development of high-density magnetic recording media is limited by superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat-assisted magnetic recording was developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here, Rh2CoSb is introduced as a new hard magnet with potential for thin-film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJ m−3 is combined with a saturation magnetization of μ0Ms = 0.52 T at 2 K (2.2 MJ m−3 and 0.44 T at room temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth-free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 μB on Co, which is hybridized with neighboring Rh atoms with a large spin–orbit interaction. Moreover, the pronounced temperature dependence of the anisotropy that follows from its Tc of 450 K, together with a thermal conductivity of 20 W m−1 K−1, make Rh2CoSb a candidate for the development of heat-assisted writing with a recording density in excess of 10 Tb in.−2.  相似文献   

13.
The anisotropy of critical current densityJ c in Bi2Ba2CaCu2O8+x single crystals has been investigated as a function both of the temperature and of the applied magnetic field. An anisotropic behavior ofJ c has been found. The decay of the remanent magnetization has been studied for fields applied both parallel and perpendicular to thec axis. A logarithmic behavior was found. A pinning energyU 0 of about 0.01 eV, independent of the direction of the applied field, was obtained.  相似文献   

14.
In the past few years the phenomenon of spin-dependent tunneling (SDT) in magnetic tunnel junctions (MTJs) has aroused enormous interest and has developed into a vigorous field of research. The large tunneling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible application in random access memories and magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. One such question is the role of interfaces in MTJs and their effect on the spin polarization of the tunneling current and TMR. In this paper we consider different models which suggest that the spin polarization is primarily determined by the electronic and atomic structure of the ferromagnet/insulator interfaces rather than by their bulk properties. First, we consider a simple tight-binding model which demonstrates that the existence of interface states and their contribution to the tunneling current depend on the degree of hybridization between the orbitals on metal and insulator atoms. The decisive role of the interfaces is further supported by studies of spin-dependent tunneling within realistic first-principles models of Co/vacuum/Al, Co/Al2O3/Co, Fe/MgO/Fe, and Co/SrTiO3/Co MTJs. We find that variations in the atomic potentials and bonding strength near the interfaces have a profound effect resulting in the formation of interface resonant states, which dramatically affect the spin polarization and TMR. The strong sensitivity of the tunneling spin polarization and TMR to the interface atomic and electronic structure dramatically expands the possibilities for engineering optimal MTJ properties for device applications.  相似文献   

15.
The paper presents a theoretical analysis of elastic magnetic small-angle neutron scattering (SANS) due to the nonuniform magnetic microstructure in nanocrystalline ferromagnets. The reaction of the magnetization to the magnetocrystalline and magnetoelastic anisotropy fields is derived using the theory of micromagnetics. In the limit where the scattering volume is a single magnetic domain, and the magnetization is nearly aligned with the direction of the magnetic field, closed form solutions are given for the differential scattering cross-section as a function of the scattering vector and of the magnetic field. These expressions involve an anisotropy field scattering function, that depends only on the Fourier components of the anisotropy field microstructure, not on the applied field, and a micromagnetic response function for SANS, that can be computed from tabulated values of the materials parameters saturation magnetization and exchange stiffness constant or spin wave stiffness constant. Based on these results, it is suggested that the anisotropy field scattering function SH can be extracted from experimental SANS data. A sum rule for SH suggests measurement of the volumetric mean square anisotropy field. When magnetocrystalline anisotropy is dominant, then a mean grain size or the grain size distribution may be determined by analysis of SH.  相似文献   

16.
We calculate the magnetization relaxation in the short-time regime for an ensemble of nanornagnets in the presence of a low frequency external AC biasing field at temperatures lower than the magnetic anisotropy energy of the individual nanornagnets. It is found that the relaxation is strongly affected by AC fields with amplitude larger than that of the T 2 fluctuations in the nuclear field. This will allow experimental probing of the nuclear spin relaxation mechanism.  相似文献   

17.
Recently, efficient spin injection, being the first step towards semiconductor spin electronics, by using BeMnZnSe as a spin filter was accomplished. Such a spin filter made it possible to align the spin orientation of conduction electrons and subsequently inject them into GaAs. However, controlling spin orientation of conduction electrons by an external voltage would be very desirable for semiconductor-based magnetoelectronics. This can be accomplished by using spin switch structures, based on resonant tunneling through magnetic quantum wells, with two separate spin-up and spin-down resonances. Here we summarize both our recent results on spin injection as well as on spin aligner and magnetic resonant tunneling structures. For accomplishing the latter, we have developed magnetic resonant tunneling diodes based on BeTe–ZnMnSe–BeTe structures. Resonant tunneling diode is meant to serve as a spin switch because of the existence of two separate spin-up and spin-down resonances. The tunneling carriers have subsequently been injected into a nonmagnetic GaAs p–i–n light emitting diode. Circular polarization of the emitted light is an indicator of the spin polarization of injected electrons. At constant magnetic field and current, degree of spin polarization could be changed from 81% to 38% by only varying the voltage across the magnetic resonant tunneling device.  相似文献   

18.
The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions can be realized. For example, being able to create and manipulate skyrmionic spin textures at room temperature is of great importance for further technological applications because they can adapt to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3Sn2 magnet with uniaxial magnetic anisotropy is reported. The magnetization dynamics are investigated using in situ Lorentz transmission electron microscopy, revealing that the transformation between different magnetic bubbles and domains is via the motion of Bloch lines driven by an applied external magnetic field. These results demonstrate that Fe3Sn2 facilitates a unique magnetic control of topological spin textures at room temperature, making it a promising candidate for further skyrmion‐based spintronic devices.  相似文献   

19.
Polycrystalline half-metallic Fe3O4 films with 1 μm in thickness were synthesized on glass substrates directly by electroless plating in aqueous solution at 90 °C without heat treatment. The films have single pure spinal phase structure and the well-crystallized columnar grains grow perpendicularly to the substrates, as revealed by XRD, XPS and SEM. At room temperature, the films exhibit negative magnetoresistance (MR) ratio of about −5.1%, which is ascribed to intergranular tunneling of spin polarized electrons of Fe3O4. The resistivity R of the films with 1 μm in thickness at room temperature is about 5.2 × 10−1 Ω cm. The cation distribution and the arrangement of the magnetic moments of the plated Fe3O4 ferrite thin films are different from that of the bulk materials, which is likely to be one of the reasons for the modification of R and MR properties.  相似文献   

20.
Due to its inherent superior perpendicular magnetocrystalline anisotropy, the FePt in L10 phase enables magnetic storage and memory devices with ultrahigh capacity. However, reversing the FePt magnetic state, and therefore encoding information, has proven to be extremely difficult. Here, it is demonstrated that an electric current can exert a large spin torque on an L10 FePt magnet, ultimately leading to reversible magnetization switching. The spin torque monotonically increases with increasing FePt thickness, exhibiting a bulk characteristic. Meanwhile, the spin torque effective fields and switching efficiency increase as the FePt approaches higher chemical ordering with stronger spin–orbit coupling. The symmetry breaking that generates spin torque within L10 FePt is shown to arise from an inherent structural gradient along the film normal direction. By artificially reversing the structural gradient, an opposite spin torque effect in L10 FePt is demonstrated. At last, the role of the disorder gradient in generating a substantial torque in a single ferromagnet is supported by theoretical calculations. These results will push forward the frontier of material systems for generating spin torques and will have a transformative impact on magnetic storage and spin memory devices with simple architecture, ultrahigh density, and readily application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号