首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
本文对椭圆管外蒸汽凝结放热过程进行了理论和实验研究,推导出椭圆管外静止饱和蒸汽凝结放热准则方程式,并分析了一些主要参数对凝结放热系数的影响.在实验研究中,对换热周长相同、长短半轴之比(a/b)不同的椭圆管外蒸汽凝结放热系数在不同工况下进行了测试,得到凝结放热实验曲线.论证了椭圆管相对于圆管来说能强化蒸汽凝结放热.理论分析与实验结果比较,表明两者吻合较好.  相似文献   

2.
本文在分析管型的变化能强化凝结放热的基础上,对对称翼型管外的蒸汽凝结放热和强化机理进行了理论研究。引进形状因子Λ,在液膜稳定层流流动工况下,应用边界层积分方法,推导出对称翼型管外凝结放热准则方程式。 文中还讨论了一些主要参数,如无因次数G_1、冷凝温差△t_w长度L、两圆弧半径之比R_1/R_2对凝结放热系数的影响。比较了在相同的弧长条件下,圆管和对称翼型管外凝结放热过程,得出了对称翼型管外能强化凝结放热的结论。  相似文献   

3.
顺排椭圆管束的对流换热及流阻特性   总被引:6,自引:0,他引:6  
李庆邻  张淑华 《化工机械》1997,24(4):1-4,41
对空气横掠顺排椭圆管束的换热及流阻特性进行了实验研究。讨论了放热系数沿管束纵向及横向的分布规律以及平均阻力系数随管束总排数的变化关系。给出了计算顺排椭圆管束放热系数及阻力的实验关联式。实验结果表明,顺排椭圆管束的管外放热系数略低于相应的叉排椭圆管束及圆管管束,但前者的阻力却比后两者低得多。  相似文献   

4.
对氟利昂R417A与R22在水平单管外的凝结换热性能进行了试验研究,试验工况温度40℃,试验管为光管和两根双侧强化管(其中C32为肋密度50fpi二维强化管,C36为相同肋密度三维强化管).目的是获得R417A在光管、二维、三维强化管外的凝结换热特性,进而研究R417A替代R22的可行性.通过Wilson热阻分离试验获得管内对流换热系数,进而从总传热热阻中分离出管外凝结换热热阻.结果显示,光管管外R22凝结Nusselt理论值与实验值偏差在±5%以内.R417A在光管外凝结换热系数约为R22的65%,而在C32、C36管外凝结换热系数分别占R22的50.8%~60.0%,31.7%~42.7%.R22在三维强化管C36外凝结换热系数是相同肋密度下二维强化管C32的1.27~1.44倍,而R417A在C32管外凝结换热系数略高于C36管,表明三维强化表面未必能进一步强化非共沸工质R417A的凝结换热.  相似文献   

5.
研究了R410A、R404A、R407C在水平强化管外的凝结换热,并进行了换热性能的对比。实验管为常用的管内螺纹、管外斜翅的三维低肋管。应用威尔逊图解法对实验数据进行处理,得到管内对流换热系数并给出Dittus-Boelter形式的强化管管内对流换热关联式,再根据热阻分离的方法得到管外凝结换热系数。结果表明,在相同换热参数下,凝结换热系数大小依次为R410A、R404A、R407C。3种制冷工质应用于该强化换热管的换热增强倍率分别在9.53~14.07、6.81~11.48和3.23~5.28的范围。而R410A、R404A和R407C在强化管内的强化倍率分别为1.77、1.73和1.76,三者相差不大。R410A管外凝结换热系数随着壁面过冷度的增大而减小,与单一制冷工质这一冷凝特性相同;而R404A和R407C与R410A不同,随着壁面过冷度的增大,管外凝结换热系数增大,这主要是非共沸制冷工质管外凝结过程存在的气膜热阻所致。  相似文献   

6.
在椭圆管外液膜流动数值模拟的基础上,对椭圆管外的液膜厚度和传热性能进行了实验研究.研究结果表明:椭圆管外液膜厚度的模拟计算与实验结果基本吻合,误差约8%,可见数值模拟方法正确;长短轴比为1.5的椭圆传热管的传热系数比圆管提高20% ~ 22%,可见椭圆管型强化传热明显.  相似文献   

7.
煤油和空气的混合物水平管内冷凝换热   总被引:6,自引:2,他引:4       下载免费PDF全文
顾红芳  陈听宽  孙丹 《化工学报》2002,53(3):313-316
引 言不凝气体存在于蒸汽中会严重削弱凝结换热效果已是众所周知的事实 ,在空气的质量含量只有0 .5 %时 ,大空间凝结换热系数就下降 5 0 % [1] ,这是在蒸汽为静止状态下得到的 .罗棣等[2 ] 用水蒸气 -空气在波纹竖槽管内进行冷凝换热的研究 .Sparrow等[3] 关于水蒸气 -空气在水平管外的冷凝研究表明 ,对于不同的冷凝换热表面 ,不同混合气体的流速对于含不凝气体的冷凝换热有着不可忽视的影响 .煤油是多组分物质 ,而且随温度和压力的不同气态组分也不同 ,相应的煤油蒸气的冷凝过程是不等温等压过程 .关于煤油蒸气冷凝换热的实验研…  相似文献   

8.
为了提高溴化锂中央空调系统中制冷蒸发器的耐腐蚀性,采用钛管代替铜管,并提出椭圆管代替圆管方式提高钛管外制冷剂蒸发效率,数值模拟研究椭圆系数E对椭圆钛管外制冷剂流动过程、液膜厚度分布及传热系数影响规律.结果 表明:在椭圆系数E=l.0~1.7范围内,随着E增大,管外液膜平均厚度减薄、液膜速度增大、干壁面积减少、传热边界层...  相似文献   

9.
曹子栋  王普勋等 《化工机械》1991,18(6):16-18,15
本文根据实验结果提出了以光管外表面积为基准,翅高16mm的国产镶嵌式铝翅片管低壁温(tb≤200℃)条件下管外侧对流放热系数的统计关联式(Nu=0.1765Re^0.5896Pr^0.3333)和随壁温升高管外侧对流放热系数的变化规律,当最高壁温为400℃时,国产镶嵌式铝翅片管示发生机械性能失效,但管外对流放热系数降低了16%,本文还通过对翅片管局部放热系数的测量,分析了壁温升高引起放热系数降低的原因。  相似文献   

10.
秀英 《天津化工》1994,(1):29-31
本文对蒸汽在水平管外呈膜状冷凝时的给热系数进行理论推导,并用电子计算机技术得出比较理想的结果。  相似文献   

11.
针对动力型热管内流动凝结传热过程中的特性复杂未知,搭建了动力型热管冷凝特性测试实验台。对不同流量及干度下的R134a管内流动凝结过程中的压降特性和传热特性进行了实验研究,实验结果表明:压降随着管内工质质量流量和气体干度的增加而增加,与文献中3种不同压降模型进行了比较,得出Muller-Steinhagen-Heck模型能更好地预测管内流动凝结过程中的压降特性。传热系数随着管内工质质量流量和气体干度的增加而增加,并且低干度区的增长斜率要明显大于高干度区的增长斜率,与文献中4种不同传热模型进行了比较,得出Chen模型能更好地预测管内流动凝结过程中的传热特性。该研究为泵的选择、换热器的设计、系统的优化以及两相流凝结相变过程的研究提供了理论参考。  相似文献   

12.
本文得到了椭圆绕线管外局部及平均凝结换热Nusselt数的变化规律,分析了椭圆的几何参数、绕线参数及表面张力等因素对换热的影响,并将结果与圆管情况进行了比较.在A=1~8范围内,当e=0~0.9209时,绕线管与光管比较,冷凝效果高29%~109%左右.理论分析与实验结果相结合,得到了凝结换热无因次关系式和式中的经验常数,确定了最佳绕线参数.  相似文献   

13.
崔腾飞  肖章平  曹马林  张琳  蒋枫 《化工进展》2014,33(11):2868-2872
复合中空热管能够有效解决普通重力热管换热设备的酸露点腐蚀问题,在回收低温烟气(<200℃)余热领域有重要的应用。建立了复合中空热管传热实验平台,对复合中空热管冷凝侧传热特性进行了实验研究。实验所用热管管长1080mm,不锈钢材质,工作介质为甲醇;热管蒸发侧和冷凝侧分别采用电加热和水冷却方式,K型热电偶被用于测量管壁温度和冷却水进出口温度,真空压力传感器测量管内蒸气饱和压力;研究了充液率(15%≤V+≤40%)和蒸发侧热流密度(9.48kW/m2≤q≤37.91kW/m2)对冷凝侧传热特性的影响。结果表明:当充液率为20%时,复合中空热管冷凝侧均温性能最好,冷凝侧换热系数最大,传热性能最佳;随着蒸发侧热流密度的增大,复合中空热管有效冷凝长度增大,冷凝侧换热系数增大。实验研究为工业应用提供了基础。  相似文献   

14.
李杨  严俊杰  乔磊  刘继平  胡申华 《化工学报》2007,58(12):2986-2993
在不同蒸气压力,相同蒸气流速条件下,完成了不同酒精浓度的混合蒸气在不同管径的竖直管外凝结换热实验。凝结换热特性曲线显示了相似的特性:随着酒精浓度的增加,凝结传热系数显著下降;随着表面过冷度的增加,凝结传热系数显示出有峰值的非线性特点。在相同条件下,半径为5 mm管外的凝结传热系数峰值出现在较大过冷度范围内,且峰值高于在半径为10 mm管外的凝结传热系数峰值。当蒸气压力为84. 52 kPa,流速为2 m·s-1时,酒精浓度为1%的混合蒸气在半径为5 mm竖直管外凝结传热系数最高达150 kW·m-2·K-1,约为水蒸气的8倍。此外,根据记录的凝结形态,珠状凝结出现在很广的浓度以及过冷度范围内。  相似文献   

15.
湿工况下平翅片传热传质实验与数值模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
任能  谷波 《化工学报》2007,58(7):1626-1631
研究了湿工况下2排错列平翅片管换热器,迎面风速在0.77~3.06 m·s-1范围内的传热特性:潜热换热量先是随迎面风速的增加而增加,当迎面风速增加到一定值后,潜热换热量受迎面风速的影响很小;与干工况相比,湿工况下空气侧的对流换热系数有所增加。在实验研究的基础上,为降低数值求解的难度,引入了“壁面反应”来模拟水蒸气在冷壁面的相变传热、传质过程,建立了湿工况平翅片管换热器空气侧三维传热、传质的简化模型。得到了湿空气的温度分布及水蒸气组分分布,并用场协同理论就迎面风速对传热、传质的影响进行了分析。将数值计算的结果与实验数据进行了对比,两者吻合很好。  相似文献   

16.
崔永章  田茂诚 《化工学报》2010,61(12):3092-3099
对高湿气体在内置折边扭带管内对流凝结换热与流动特性进行了实验研究。分析了壁面温度、水蒸气含量、进口温度、气流速度等对高湿气体对流凝结换热的影响,降低壁面温度、提高水蒸气含量对流和凝结换热均提高,但对强化凝结换热尤其明显。引起扭带管内冷凝液膜状态变化的参数有扭曲比y和扭带与管壁间隙b。y越低气流旋转越强,导致液膜加厚而引起传热量降低和流动阻力增加;b较小时液膜积存在扭带端部,不仅降低传热面积而且无气流穿越扭带端部,b较大时旋转气流能穿越扭带端部,减薄管表面液膜厚度,强化凝结换热。  相似文献   

17.
在复合镀层表面上实现滴状冷凝传热的研究   总被引:5,自引:1,他引:5  
研究了采用Ni-PTFE复合镀层表面实现水蒸气滴状冷凝的新方法。在对Ni-PTFE复合电镀工艺研究的基础上,进行了水蒸气在无镀层的黄铜板表面和有复合镀层表面的冷凝传热的对比实验。实验结果表明,在Ni-PTFE复合镀层表面上可实现水蒸气的滴状冷凝,有着显著的强化冷凝换热效果。  相似文献   

18.
重力热管冷凝段运行特征的可视化实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
应用电容层析成像技术(ECT)对重力热管冷凝段的流动换热进行了可视化实验研究。重力热管以乙醇为工作介质,通过加热器控制重力热管蒸发段加热温度,冷凝段采用冷却水与乙醇蒸气进行逆向对流换热。通过ECT测量系统对冷凝段乙醇蒸气的冷凝过程进行监测,观察不同工况条件下重力热管冷凝段的气、液分布特性和液膜的形成及发展过程。摒弃了传统电容传感器的屏蔽罩结构,通过将测量电极用绝水层密封实现了传感器在液下环境工作,有效地拓展了ECT技术的应用领域。实验结果显示:当蒸发段加热温度较低时,乙醇蒸气在冷凝段壁面凝结形成条索状流动;随加热温度升高,冷凝液流动过渡至环状流;加热温度超过一定限值后,冷凝段出现液膜增厚甚至闭合脱落的周期性现象,并且频率随温度升高而升高。重力热管与垂直方向夹角为30°倾斜放置时,在高加热温度条件下同样存在液膜增厚甚至闭合脱落的周期性现象。  相似文献   

19.
Marangoni凝结形态的影响因素   总被引:1,自引:1,他引:0       下载免费PDF全文
胡申华  严俊杰  王进仕 《化工学报》2011,62(11):3053-3059
用实验方法研究了宏观温度场对一定浓度范围内的水-酒精蒸气混合物的Marangoni凝结的影响。根据拍摄记录的图片,观察到了膜状、珠状、珠状带块状、波动条纹状、溪状和珠状带溪状6种凝结形态。发现并非所有的凝结形态都出现在每个工况中,而且有些凝结状态之间并没有严格的界限。凝结形态随过冷度、浓度、流速、压力和表面温差的不同会发生变化,尤其是过冷度和浓度对凝结形态的影响最大。凝结形态与其对应的凝结表面传热系数有紧密的联系:在相同的实验条件下,当凝结表面传热系数出现峰值时,其对应的凝结形态均为珠状凝结。当凝结表面传热系数较低时,其对应的凝结形态为膜状凝结或较大液块凝结。最后对平块和斜块的Marangoni凝结形态进行了对比分析:可以看出斜块凝结面上液珠比较混乱,凝结形态不能简单地归结为珠状、条状、环状、平膜状和带起伏的膜状中的一种,一般是各种凝结形态都有一部分,或者说居于各凝结形态的中间过渡态。  相似文献   

20.
动力型热管内R134a流动沸腾传热过程的特性   总被引:3,自引:3,他引:0       下载免费PDF全文
针对动力型热管内两相流沸腾过程复杂未知,实验复现性差的问题,搭建了动力型热管两相流沸腾传热实验装置,对水平管内R134a工质沸腾传热过程的沿程阻力特性及对流传热系数进行了实验研究,并将获得的实验数据与前人总结的压降、对流传热系数计算关联式进行对比分析。研究表明,Muller-Steinhagen-Heck压降关联式的积分值与实验结果吻合较好,误差在±10%以内;Mohseni关联式在干度大于0.1时所得对流传热系数与实验结果具有较好一致性,误差在±10%以内,但在干度小于0.1时存在较大偏差,部分误差已超30%,为此重新拟合了干度小于0.1时的对流传热系数关联式。该结果可为该类换热器的实验研究、数值模拟及优化设计提供有效的理论参考标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号