首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An elastic-plastic three-dimensional finite element method analysis is used to determine the stress and strain distributions ahead of notches of four-point bending (4PB) specimens with various sizes (W, B and a) and widths (B). By measuring the location of the cleavage initiation sites for a C-Mn steel, the local cleavage fracture stress σf is accurately determined. With increasing specimen sizes and widths the fracture load Pf increases considerably, but σf remains nearly constant. The reason that the σf of the specimen with minimum size is slightly larger than that of the other specimens is analyzed by an active zone model of cleavage fracture for notched specimens. The critical event for cleavage fracture is the propagation of a ferrite grain-sized crack into the neighboring matrix, and is independent of specimen sizes and widths. σf is mainly determined by the length of the critical microcrack, and the specimen sizes and widths have little effect on it.  相似文献   

2.
In this work, notched specimens with two notch geometries were tested in two loading modes (four-point bending (4PB) and three-point bending (3PB)) at various loading rates at a temperature of − 110°C for a C–Mn steel. An elastic–plastic finite-element method (FEM) is used to determine the stress distributions ahead of notches. By accurately measuring the distances of the cleavage initiation sites from the notch roots, the local cleavage fracture stress σ f is measured. The results obtained and combining with previous studies by the authors show that the local cleavage fracture stress σ f is closely related to the cleavage fracture mechanism (critical events) in steels. The σ f values do not change with loading rate, notch geometry and loading mode, as long as the critical event of cleavage fracture does not change at various testing conditions. The σ f is mainly determined by the steel microstructure, and its scatter is mainly caused by the size distribution of the weakest constituent in steels (ferrite grain or pearlite colony with large sizes and large second phase particles) and the change of the critical events in cleavage process. The σ f can characterize the intrinsic toughness of steels and may be used in a “local approach” model for assessing integrity of flawed structures. The σ f values could be measured by both 4PB and 3PB tests.  相似文献   

3.
Four point bending (4PB) notched specimens with different notch sizes are tested at various loading rates at a temperature of −110 °C for a C-Mn steel. An elastic-plastic finite element method (FEM) is used to determine the stress and strain distributions ahead of notches. By accurately measuring the distances of the cleavage initiation sites from the notch roots, the local cleavage fracture stress σf is measured. The results show that the local cleavage fracture stress σf does not essentially change with loading rate V and notch size. The reason for this is that the cleavage micromechanism does not change in the different specimens at various loading rates. The cleavage micromechanism involves competition of two critical events of crack propagation and crack nucleation in the high stress and strain volume ahead of notch root. The large scatter of σf and notch toughness are mainly caused by the different critical events in different specimens.  相似文献   

4.
In the Notch Stress Intensity Factor (N‐SIF) approach the weld toe region is modelled as a sharp V‐shaped corner and local stress distributions in planar problems can be expressed in closed form on the basis of the relevant mode I and mode II N‐SIFs. Initially thought of as parameters suitable for quantifying only the crack initiation life, N‐SIFs were shown able to predict also the total fatigue life, at least when a large part of the life is spent as in the propagation of small cracks in the highly stressed region close to the notch tip. While the assumption of a welded toe radius equal to zero seems to be reasonable in many cases of practical interest, it is well known that some welding procedures are able to assure the presence of a mean value of the weld toe radius substantially different from zero. Under such conditions any N‐SIF‐based prediction is expected to underestimate the fatigue life. In order to investigate the degree of conservatism, a total of 128 fillet welded specimens are re‐analysed in the present work by using an energy‐based N‐SIF approach. The local weld toe geometry, characterised by its angle and radius, has been measured with accuracy for the actual test series. The aim of the work is to determine if the N‐SIF‐based model is capable of taking into account the large variability of the toe angle, and to quantify the inaccuracy in the predictions due to the simplification of setting the toe radius equal to zero.  相似文献   

5.
The work is an initial effort on adopting a statistical approach to correlate the fracture behavior between a notched and a fracture mechanics specimen. The random nature of cleavage fracture process determines that both the microscopic fracture stress and the macroscopic properties including fracture load, fracture toughness, and the ductile to brittle transition temperature are all stochastic parameters. This understanding leads to the proposal of statistical assessment of cleavage induced notch brittleness of ferritic steels according to a recently proposed local approach model of cleavage fracture. The temperature independence of the 2 Weibull parameters in the new model induces a master curve to correlate the fracture load at different temperatures. A normalized stress combining the 2 Weibull parameters and the yield stress is proposed as the deterministic index to measure notch toughness. This proposed index is applied to compare the notch toughness of a ferritic steel with 2 different microstructures.  相似文献   

6.
7.
Quantification of the enhancement in cleavage fracture toughness of ferritic steels following warm pre‐stressing has received great interest in light of its significance in the integrity assessment of such structures as pressure vessels. A Beremin type probability distribution model, i.e., a local stress‐based approach to cleavage fracture, has been developed and used for estimating cleavage fracture following prior loading (or warm pre‐stressing, WPS) in two ferritic steels with different geometry configurations. Firstly, the Weibull parameters required to match the experimental scatter in lower shelf toughness of the candidate steels are identified. These parameters are then used in two‐ and three‐dimensional finite element simulations of prior loading on the upper shelf followed by unloading and cooling to lower shelf temperatures (WPS) to determine the probability of failure. Using both isotropic hardening and kinematic hardening material models, the effect of hardening response on the predictions obtained from the suggested approach has been examined. The predictions are consistent with experimental scatter in toughness following WPS and provide a means of determining the importance of the crack tip residual stresses. We demonstrate that for our steels the crack tip residual stress is the pivotal feature in improving the fracture toughness following WPS. Predictions are compared with the available experimental data. The paper finally discusses the results in the context of the non‐uniqueness of the Weibull parameters and investigates the sensitivity of predictions to the Weibull exponent, m, and the relevance of m to the stress triaxiality factor as suggested in the literature.  相似文献   

8.
Defects in structural components are often associated with welds that may contain significant levels of residual stress. Whilst the primary load acting on the component may induce low constraint conditions at the crack tip, the presence of residual stresses, e.g. due to welding, can modify this constraint level and consequently influence the observed fracture toughness behaviour. This paper presents the results of a combined experimental and numerical programme aimed at exploring this issue. Cleavage fracture toughness data for high and low constraint specimens are presented with and without residual stresses. The results indicate that under certain conditions, the constraint-induced increase in cleavage fracture toughness may be eroded by the presence of a residual stress in the vicinity of the crack. The results are quantified with respect to two-parameter fracture mechanics in which the  T  and  Q  parameters are appropriately defined. Preliminary guidance is provided for the assessment of defects when residual stresses may influence crack-tip constraint.  相似文献   

9.
This paper examines the effects of loading rate on the Weibull stress model for prediction of cleavage fracture in a low-strength, A515-70 pressure vessel steel. Interest focuses on low-to-moderate loading rates ( K˙ I < 2500  MPa √m  s−1 ). Shallow cracked SE(B) specimens were tested at four different loading rates for comparison with previous quasi-static tests on shallow notch SE(B)s and standard C(T)s. To utilize these dynamic experimental data, we assume that the Weibull modulus ( m ) previously calibrated using quasi-static data remains invariant over the loading rates of interest. The effects of dynamic loading on the Weibull stress model enter through the rate-sensitive material flow properties, the scale parameter ( σ u ) and the threshold Weibull stress ( σ w-min ). Rate-sensitive flow properties are modelled using a viscoplastic constitutive model with uniaxial, tension stress–plastic strain curves specified at varying plastic strain rates. The analyses examine dependencies of σ w-min and σ u on K˙ I . Present results indicate that σ w-min and σ u are weak functions of loading rate K˙ I for this pressure vessel steel. However, the predicted cumulative probability for cleavage exhibits a strong sensitivity to σ u and, consequently, the dependency of σ u on K˙ I is sufficient to preclude use of the static σ u value for high loading rates.  相似文献   

10.
Whether flaws in structures containing residual (secondary) stresses will extend under particular operational (primary) loads depends on the extent to which the residual stress field affects: (a) the nature and distribution of initiators; (b) the combined (primary + secondary) stresses and strains experienced by potential initiators. This paper compares fractographic data from specimens loaded by only a primary stress with data from specimens also containing a tensile residual stress field. Three‐dimensional elastic–plastic finite element calculations are used to characterize the stress–strain conditions at the initiation sites at the onset of brittle fracture. The introduction of a residual stress changes the dominant stage in fracture nucleation from microcrack extension to particle cracking. This offsets some of the decrease in fracture toughness expected when the residual stress field increases specimen constraint.  相似文献   

11.
This study explores applications of three-parameter Weibull stress models to predict cleavage fracture behavior in ferritic structural steels tested in the transition region. The work emphasizes the role of the threshold parameters (th and w – min) in cleavage fracture predictions of a surface crack specimen loaded predominantly in tension for an A515-70 pressure vessel steel. A recently proposed procedure based upon a toughness scaling methodology using a modified Weibull stress (* w) extends the calibration scheme for the Weibull modulus, m, to include the threshold parameters. The methodology is applied to calibrate the Weibull stress parameter for the tested material and then to predict the toughness distribution for the surface crack specimen. While the functional relationship between * w and m suggests a strong effect of the threshold stress, th, on the calibrated m-parameter, the results show a remarkably weak dependence of fracture predictions on th as does the dependence of fracture predictions on w–min for this specimen.  相似文献   

12.
Elastic-plastic two-dimensional (2D) and three-dimensional (3D) finite element models (FEM) are used to analyze the stress distributions ahead of notches of four-point bending (4PB) and three-point bending (3PB) specimens with various sizes of a C-Mn steel. By accurately measuring the location of the cleavage initiation sites, the local cleavage fracture stress f and the macroscopic cleavage fracture stress F is accurately measured. The f and F measured by 2D FEM are higher than that by 3D FEM. f values are lower than the F, and the f values could be predicted by f=(0.8––1.0)F. With increasing specimen sizes (W,B and a) and specimen widths (B) and changing loading methods (4PB and 3PB), the fracture load P f changes considerably, but the F and f remain nearly constant. The stable lower boundary F and f values could be obtained by using notched specimens with sizes larger than the Griffiths–Owen specimen. The local cleavage fracture stress f could be accurately used in the analysis of fracture micromechanism, and to characterize intrinsic toughness of steel. The macroscopic cleavage fracture stress F is suggested to be a potential engineering parameter which can be used to assess fracture toughness of steel and to design engineering structure.  相似文献   

13.
This paper examines the sample size of the experimental datasets in calibrating the Weibull parameters for the modified three‐parameter Weibull stress framework, so as to enhance the experimental strategy for cleavage assessment of ferritic steels based on a local approach. The present work generates a large number of random and independent subsets from the ‘Euro steel’ fracture toughness database for the calibration procedure. The calibration of the Weibull parameters utilizes a subset of high‐constraint specimens and a subset of low‐constraint specimens from the Euro steel database to resolve the uniqueness issue in the calibration procedure reported in previous studies. This investigation reveals strong dependence of the calibrated Weibull modulus on both the constraint differences between the high‐constraint subset and the low‐constraint subset and the size of the selected subsets. The scale fracture toughness value, however, does not exhibit significant dependence on the constraint difference between the two subsets of specimens. The confidence level of the scale fracture toughness, nevertheless, still exhibits strong dependence on the sample size of the experimental data.  相似文献   

14.
This paper uses a local model to predict ductile fracture in geometrically similar structures of different sizes containing either sharp cracks or blunt stress concentrators. Simple theoretical considerations suggest that when fracture occurs by quasi-isotropic void growth, fracture initiation at blunt notches follows replica scaling, whereas fracture initiation at sharp cracks does not. Simulations with a local fracture model of fracture events in (1) fatigue precracked compact specimens and (2) three-point-bend bars containing blunt notches confirm these conclusions. However, a comparison of simulations with actual experimental results with HY-130 steel specimens leads to mixed conclusions. Predicted and observed behaviors for fracture at sharp cracks agree well, but the discrepancy is considerable for fracture initiating at blunt notches loaded in bending. Significant scaling effects are observed in the experiments for the conditions of fracture initiation at blunt notches. Fractographic analysis reveals that the reason for this discrepancy is a difference in the micromechanisms controlling fracture at sharp cracks as opposed to blunt notches. At sharp cracks, quasi-isotropic void growth dominates, whereas fracture initiates at blunt notches by a shear localization process and the nucleation, growth, and coalescence of voids in a mixed shear and tensile deformation field. The transition from one mode to the other may be governed by the hardening rate and, if so, is material dependent. Therefore, when using local fracture models for predicting fracture under generalized geometric and loading conditions, care must be taken, that the micromechanisms of ductile fracture invoked in the actual material match those assumed by the local fracture model. If this correspondence is verified, local fracture models can be used to predict fracture conditions and associated scaling effects for situations not amenable to treatment by classical elasto-plastic fracture mechanics. However, new or expanded models that can treat ductile fracture in localized shear zones should be developed to realize the full potential of these local fracture methodologies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
This paper investigates the possibility of unifying different criteria concerned with the fatigue strength of welded joints. In particular, it compares estimates based on local stress fields due to geometry (evaluated without any crack-like defect) and residual life predictions in the presence of a crack, according to LEFM. Fatigue strength results already reported in the literature for transverse non-load-carrying fillet welds are used as an experimental database. Nominal stress ranges were largely scattered, due to large variations of joint geometrical parameters. The scatter band greatly reduces as soon as a 0.3-mm virtual crack is introduced at the weld toe, and the behaviour of the joints is given in terms of Δ K I versus total life fatigue. Such calculations, not different from residual life predictions, are easily performed by using the local stress distributions determined near the weld toes in the absence of crack-like defects. More precisely, the analytical expressions for K I are based on a simple combination of the notch stress intensity factors K 1N and K 2N for opening and sliding modes. Then, fatigue strength predictions, as accurate as those based on fracture mechanics, are performed by the local stress analysis in a simpler way.  相似文献   

16.
The notch stress intensity factor (NSIF) based analytical frame is applied to the slit tips (or weld roots) of welded joints with inclusion of the T-stress component. This T-stress can be determined from FE models evaluating the ligament stresses close to the pointed slit tip. An alternative analytical frame is presented for the corresponding keyhole notches based on analytical solutions from the literature, which are applied to the ligament stresses.
In the slit tip models, the mean local strain energy density (SED) with inclusion of the T-stress effect is determined analytically and numerically in comparison, using two different fatigue-relevant control radii,  R 0= 0.28 mm and  R 0= 0.15 mm, the former value well proven for thick-sheet welded joints made of structural steel. The latter smaller value is tentatively proposed for thin-sheet welded joints, in the direction suggested in the recent literature where a reduction of the microstructural support length for laser beam welds and resistance spot welds is recommended. The FEM-based and analytical stress concentration factors (SCF) for the lap joint keyhole model and also the SED values for the corresponding pointed slit tips are found to be in good agreement. The  J -integral consisting of the first and second component (the latter containing the T-stress) is compared with the corresponding SED values.  相似文献   

17.
18.
In this research, the correlation between the stress concentration and the residual magnetic field (RMF) of 30Cr steel was investigated. Tensile tests were carried out to measure the RMF signals on the surface of U‐shaped defect specimens. It was found that the tangential RMF signal at the defect area is correlated to the applied load and the stress concentration factor. A new method based on magnetic field to evaluate the stress concentration degree is proposed. This research provides a potential possibility for quantitative inspection of the stress concentration in ferromagnetic steels using the RMF measurements.  相似文献   

19.
Brittle fracture of notched components has been widely investigated in recent decades both experimentally and theoretically. This is because of designers' concern about catastrophic failure in notched engineering components made of brittle or quasi‐brittle materials. Up to now, extensive studies have been performed on brittle fracture analysis of engineering components weakened by notches of various features under mode I, mode II, mode III and mixed mode loading conditions. In the present paper, the attempt is made to review the research articles published in the open literature on brittle fracture assessment of notched components by means of notch fracture mechanics concepts. The main focus of this paper is on the stress‐based fracture criteria, which are the basis of authors' experience in recent years.  相似文献   

20.
This study presents the effect of residual stresses on cleavage fracture toughness by using the cohesive zone model under mode I, plane stain conditions. Modified boundary layer simulations were performed with the remote boundary conditions governed by the elastic K‐field and T‐stress. The eigenstrain method was used to introduce residual stresses into the finite element model. A layer of cohesive elements was deployed ahead of the crack tip to simulate the fracture process zone. A bilinear traction–separation‐law was used to characterize the behaviour of the cohesive elements. It was assumed that the initiation of the crack occurs when the opening stress drops to zero at the first integration point of the first cohesive element ahead of the crack tip. Results show that tensile residual stresses can decrease the cleavage fracture toughness significantly. The effect of the weld zone size on cleavage fracture toughness was also investigated, and it has been found that the initiation toughness is the linear function of the size of the geometrically similar weld. Results also show that the effect of the residual stress is stronger for negative T‐stress while its effect is relatively smaller for positive T‐stress. The influence of damage parameters and material hardening was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号