首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of the addition of activated carbon to three, 3 L submerged anaerobic membrane bioreactors (SAMBRs) in terms of chemical oxygen demand (COD) removal, flux, and transmembrane pressure (TMP). The feed was a synthetic substrate with a COD of 460?mg?L?1, with one reactor run as a control, one with 1.7?g?L?1 of powdered activated carbon (PAC), and the third with 1.7?g?L?1 of granular activated carbon (GAC). While COD removal was high in all reactors (>90%), in comparison to the control (SAMBR1), the average COD removal in SAMBR2 (PAC) increased by 22.4%, while SAMBR3 with GAC was not significantly better. Because PAC has a significantly greater surface area per mass than GAC, it is probable that this difference was primarily due to the greater absorbance of fine colloidal particles and high molecular weight organics onto the carbon surface. These effects manifested themselves by SAMBR2 having lower TMPs and higher fluxes than both SAMBR3 and SAMBR1. Volatile fatty acids in the effluent from all three SAMBRs were extremely low (<18?mg?L?1), even during step changes in hydraulic retention tune, and most of the soluble COD in the effluent was soluble microbial products. Biochemical methane potential assays showed that biomass in the SAMBRs was less active than the seed sludge, and it appears that the addition of activated carbon to Reactors SAMBR2 and SAMBR3 provided a solid support for growth, and hence reduced floc breakage.  相似文献   

2.
The Integrated Fixed Film Activated Sludge (IFAS) wastewater treatment systems are activated sludge biological nutrient removal processes that have been enhanced by the addition of biofilm support media into the aerobic zone of the system to obtain year round nitrification in activated sludge systems that otherwise could not support it. The objective of this study was to develop a computer package called “IFAS” that allows steady-state simulation of IFAS wastewater treatment processes based on the International Association Water Quality general model for activated sludge and empirical equations for chemical oxygen demand (COD) uptake and nitrification on integrated fixed film developed at Virginia Tech. The current version of the IFAS program supports only sponge-type media; however, the model could be modified for other media if the appropriate equations and required parameters values are known. Data obtained from IFAS sponge media pilot scale plants treating a weak municipal wastewater supplemented by sodium acetate, urea, sodium bicarbonate, and potassium phosphates and operated at different aerobic mean cells residence times were used to evaluate the model with parameter values for nitrification and COD uptake rates developed in batch studies. The model-generated ammonia and soluble COD profiles were insignificantly different statistically from the experimental data. The IFAS model satisfactorily predicts carbonaceous removal and nitrification, and has the potential to be a useful tool for scientists and engineers seeking to design and optimize either IFAS or conventional biological nutrient removal activated sludge systems.  相似文献   

3.
Models ranging through simple, intermediate, and International Water Association complex activated sludge models (ASMs) were evaluated to compare their ability to describe biomass growth and substrate removal in an activated sludge system. A membrane-activated sludge bench-scale system was used to treat a complex synthetic wastewater over a wide range of operating conditions, ranging from 1 to 15 days solids retention time and 4 to 12 h hydraulic retention time. Total suspended solids, volatile suspended solids (VSSs), and total and soluble chemical oxygen demands (CODs) were monitored in the influent, the reactor, and the effluent. A variety of substrate removal formulations were used with the simple and intermediate models. Although all models provide excellent prediction of biomass growth, the intermediate model was best. Prediction of substrate removal was good with models that incorporated a nonbiodegradable component in the influent. ASM3 was the best model for predicting effluent soluble COD, but overall, the intermediate model was judged best for prediction of mixed liquor VSS and effluent soluble COD.  相似文献   

4.
Feasibility of the upflow anaerobic sludge blanket (UASB) process was investigated for the treatment of tapioca starch industry wastewater. After removal of suspended solids by simple gravity settling, starch wastewater was used as a feed. Start-up of a 21.5-L reactor with diluted feed of approximately 3,000 mg∕L chemical oxygen demand (COD) was accomplished in about 6 weeks using seed sludge from an anaerobic pond treating tapioca starch wastewater. By the end of the start-up period, gas productivity of 4–5 m3/m3r?day was obtained. Undiluted supernatant wastewater with a COD concentration of 12,000–24,000 mg∕L was fed during steady-state reactor operation at an organic loading rate of 10–16 kg COD/m3r?day. The upflow velocity was maintained at 0.5 m∕h with a recirculation ratio of 4:1. COD conversion efficiencies >95% and gas productivity of 5–8 m3/m3r?day were obtained. These results indicated that removal of starch solids from wastewater by simple gravity settling was sufficient to obtain satisfactory performance of the UASB process.  相似文献   

5.
The adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was investigated in the presence and absence of effluent organic matter (EfOM) at an environmentally relevant concentration range (0.1–500??μg/L). Adsorption of PFOS and PFOA to PAC fitted the Freundlich model well (r2>0.98), and adsorption capacity of PFOS (KF = 17.48) and PFOA (KF = 10.03) in the absence of EfOM was more than one order of magnitude higher than that in the presence of EfOM (KF = 0.66 for PFOS, KF = 0.20 for PFOA), indicating that EfOM greatly reduces the adsorption capacity of PAC. Moreover, EfOM was characterized by ultrafiltration, and fractions of nominal molecular weights were obtained to investigate their effect on the PFOS and PFOA adsorption. The fraction of <1??kDa had greater effect on adsorption than the fraction of >30??kDa, indicating that the similar molecular size of target compounds was the major contributor to adsorption competition. Additionally, biosorption of PFOS and PFOA to activated sludge fitted the linear isotherm (r2>0.9) within a concentration range of 50–400??μg/L. On the basis of our data, the estimated partition coefficient, Kd, was 729??L/kg for PFOS and 154??L/kg for PFOA, respectively, suggesting that PFOS and especially PFOA have a low tendency to partition onto sludge.  相似文献   

6.
A hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with an effluent recycle was used for biological treatment of 2,4,6 tri-chlorophenol (TCP) containing synthetic wastewater. The effects of sludge age (solids retention time) on chemical oxygen demand (COD), TCP, and toxicity removal performance of the system were investigated for sludge ages between 5 and 30?days, while the feed COD (2600±100?mg?L?1), TCP (370±10?mg?L?1), and the hydraulic residence time (25?h) were constant. Percent TCP, COD, and toxicity removals increased with increasing sludge age resulting in nearly complete COD, TCP, and toxicity removal at sludge ages above 20?days. Biomass concentrations in the packed column and in the aeration tank increased with increasing sludge age resulting in low reactor TCP concentrations, and therefore, high TCP, COD, and toxicity removals. More than 95% of COD, TCP, and toxicity removal took place in the packed column reactor. Volumetric rates of TCP and COD removal increased due to increasing biomass and decreasing effluent TCP and COD concentrations with increasing sludge age. The specific rate of TCP removal was maximum (120?mg?TCP?gX?1?day?1) at a sludge age of 20?days. TCP inhibition was eliminated by operation of the system at sludge age above 20?days to obtain nearly complete COD, TCP, and toxicity removal.  相似文献   

7.
Three dye solutions, namely, C.I. Acid Yellow 17, C.I. Basic Blue 3, and C.I. Basic Red 2, were treated in an upflow anaerobic sludge blanket (UASB) reactor followed by a semi-continuous aerobic activated sludge tank. When hydraulic retention time was about 12 hours, no significant color removal was observed in the aerobic stage. In the anaerobic stage, Acid Yellow 17, Basic Blue 3, and Basic Red 2 were removed by 20%, 72%, and 78%, respectively. To treat wastewater from a dye manufacturing factor with COD concentration of 1200 mg/l and Color of 500 degrees (dilution factor), an UASB reactor (4.5 liters) and an activated sludge tank (5 liters, adjustable), COD and color were removed by more than 83% and 90% at a COD loading rate of 5.3 kg COD/m3-day in the anaerobic stage, and at the hydraulic retention time of 6-10 hours for the anaerobic stage and 6.5 for the aerobic stage. The anaerobic stage of the A/O system removes both color and COD. In addition, it also improves biodegradability of dyes for further aeroic treatment.  相似文献   

8.
The use of a bioengineered bioluminescent bacterium (Shk1) for monitoring zinc toxicity was evaluated with samples from a municipal activated sludge wastewater treatment plant and in a bench-scale activated sludge system. Bioluminescent measurements were compared with oxygen uptake rates of activated sludge samples. In batch experiments with activated sludge, the Zn EC50 for Shk1 bioluminescence was 16 mg/L, while the Zn EC50 for activated sludge OURs was approximately 58 mg/L. In the bench-scale system, the influent Zn concentrations tested were 50 and 200 mg/L in toxic shock loads of about 4 h duration. Soluble Zn transport through the influent, aeration basin, and clarifier was able to be monitored by the decrease in Shk1 bioluminescence. However, bioluminescence in samples from the aeration basin decreased faster than activated sludge specific oxygen uptake rates. Differences in responses of Shk1 and the activated sludge community may be due to differences in the assay conditions, the growth forms, physiology of the organisms, or previous cultivation conditions.  相似文献   

9.
This study examined the effects of COD:N:P ratio on nitrogen and phosphorus removal in a single upflow fixed-bed filter provided with anaerobic, anoxic, and aerobic conditions through effluent and sludge recirculation and diffused air aeration. A high-strength wastewater mainly made of peptone, ammonium chloride, monopotassium phosphate, and sodium bicarbonate with varying COD, N, and P concentrations (COD: 2,500–6,000, N: 25–100, and P: 20–50 mg/L) was used as a substrate feed. Sodium acetate provided about 1,500 mg/L of the wastewater COD while the remainder was provided by glucose and peptone. A series of orthogonal tests using three factors, namely, COD, N, and P concentrations, at three different concentration levels were carried out. The experimental results obtained revealed that phosphorus removal efficiency was affected more by its own concentration than that of COD and N concentrations; while nitrogen removal efficiency was unaffected by different phosphorus concentrations. At a COD:N:P ratio of 300:5:1, both nitrogen and phosphorus were effectively removed using the filter, with removal efficiencies at 87 and 76%, respectively, under volumetric loadings of 0.1?kg?N/m3?d and 0.02?kg?P/m3?d.  相似文献   

10.
Anaerobic degradation of phenol mixed with a readily degradable synthetic wastewater (DSWW) as a cosubstrate was studied in a 12?L upflow anaerobic sludge blanket reactor at 30±2°C over a period of 632?days. DSWW was prepared by diluting sugar cane based molasses. The biomass was acclimatized to high phenol concentration by gradually decreasing the DSWW chemical oxygen demand (COD) of 4,000?mg/L. Feed made up of phenol COD and DSWW COD in the ratio of 7:3 (phenol concentration = 1,176?mg/L) was successfully treated at a hydraulic retention time (HRT) of 12?h and organic loading rate (OLR) of 8?g?COD/L?day. Phenol removal ranged from 99.9 to 84% at phenol COD varying from 10 to 70% in the feed. During the entire operation, COD removal varied from about 74 to 91.3%. The influent COD was distributed into CH4–COD ( ~ 72%), effluent COD ( ~ 17%), and sludge and unaccounted COD ( ~ 11%). The process failure occurred at 4:1 phenol COD: DSWW COD. Specific methanogenic activity of granular sludge exhibited uniform activity up to phenol COD of 70%. The performance of the reactor could not be maintained beyond 70% phenol COD even by reducing the sludge loading rate, increasing HRT, or decreasing OLR.  相似文献   

11.
活性炭吸附法去除冶炼废水COD的研究   总被引:1,自引:0,他引:1  
采用活性炭吸附法对株冶冶炼废水进行了COD去除研究,考察了pH值、反应时间、活性炭用量、反应温度对去除率的影响。结果表明:采用粉末活性炭为吸附剂,当pH值为8.5,搅拌时间为0.5h,活性炭用量为0.25g/L,温度为25℃时,COD去除率达到64.87%,出水COD约为20mg/L。  相似文献   

12.
Heavy metal cadmium(II) was added stepwise into an A2O pilot plant to investigate the toxic effects of Cd(II) on the removal efficiencies, kinetic parameters (yield coefficients and maximum specific growth rates) and reaction rates of carbon, nitrogen and phosphate for the acclimatized heterotrophic and autotrophic bacteria. Results showed that 2?mg/L Cd(II) initially affected the biological reaction of phosphate removal. At Cd(II) 5?mg/L, the efficiencies of total nitrogen removal and nitrification were substantially dropped. At the same time, the yield coefficient and maximum specific growth rate of heterotrophs were significantly decreased from 0.8?g?COD/g?COD and 6.44?day?1 to 0.54?g?COD/g?COD and 4.67?day?1, respectively. And, the denitrification rate was inhibited by about 61%. The inhibition percentages of anaerobic release, anoxic and aerobic uptake rates of phosphate were about 76, 64, and 90%, respectively. When Cd(II) concentration was continually increased up to 35?mg/L, removal efficiency of chemical oxygen demand (COD) was significantly dropped. However, there was no obvious inhibition on the biological reactions of anaerobic ammonification.  相似文献   

13.
The potential benefits prefermentation can provide to biological nutrient removal are measured and compared to the costs of excess oxygen consumption and sludge production incurred by an activated sludge system that utilizes prefermentation, instead of primary clarification. Prefermentation was found to produce superior performance in regards to enhanced biological phosphorus removal. A lower soluble orthophosphorus effluent value [3.2?mg/L for the prefermented activated sludge (PAS) train versus 4.6?mg/L for the control train with primary clarification (PCAS)] and a higher percent phosphorus (% P) content of the biomass (9.0% for the PAS train versus 7.8% for the PCAS train) were both found to be statistically significant (P values of 4.26×10?5 and 0.0082, respectively). In addition statistically significant improvements in denitrification rates and reduced observed yields were observed due to prefermentation. However statistically significant increases in solids inventory and in particular oxygen uptake rates offset these improvements. Waste activated sludge production was slightly higher in the PAS train but was not found to be statistically significant.  相似文献   

14.
以江西某厂铼生产过程中产生的难降解萃取有机废液为研究对象,采用吸附-絮凝法去除企业萃取废液中难降解的化学需氧量(COD)。每100 mL该废液加入5 mL浓度为5%的聚合氯化铝(PAC)溶液和0.5 g炭粉搅拌15 min,再加入1 mL浓度为0.3%的聚丙烯酰胺(PAM)溶液,抽滤后,COD可从1368 mg/L降至200 mg/L,废液COD去除率为85.38%。研究结果表明,该方法可大幅提高难降解有机废水中COD的去除率,保证现有污水处理后续工序水质的COD稳定,减轻企业环保压力,降低运行成本。  相似文献   

15.
An innovative anaerobic–aerobic integrated bioreactor system consisting of an upflow anaerobic sludge blanket (UASB) and a jet loop reactor was developed to investigate the feasibility of combined removal of carbon and nitrogen for a low-strength wastewater at different hydraulic retention times (HRTs) and recycle ratios. Total chemical oxygen demand (COD) removal of the integrated system increased from 87 to 92%, at a combined system HRT of 44?h, when the recycle ratio was increased from 100 to 400%, respectively. Denitrification efficiency of the integrated system increased from 49 to 86%, at all HRTs, when the recycle ratio was increased from 100 to 400%. The integrated system, on average, achieved more than 78% of total nitrogen at all HRTs. Nitrogen content of the biogas produced from the UASB reactor increased with increase in recycle ratios while the methane content exhibited a reverse trend, irrespective of the HRTs. Sludge volume index of the UASB reactor increased from 15?to?42?mL/g total suspended solids at the end of the study. Specific methanogenic activity of the granular sludge decreased from 1.3 to 0.8 g CH4–COD/g volatile suspended solids per day at the end of the study. Nitrogen and COD mass balance of the integrated system indicated that a substantial amount of influent nitrogen and COD was lost in the effluent as dissolved form.  相似文献   

16.
Density and Activity Characterization of Activated Sludge Flocs   总被引:1,自引:0,他引:1  
Activated sludge flocs are made up of a conglomerate of materials including microorganisms, exocellular polymers, inert particulates, slow and nonbiodegradable organic particles, and water. The goal of this study was to determine if inert/unbiodegradable aggregates had higher densities than active biomass. It was also desired to determine whether mixed liquor could be gravimetrically settled to differentially stratify flocs based on density and biological activity. In this manner, if activity stratification is possible, then less active biomass could be wasted preferentially during wastewater treatment operations (e.g., during daily wastage), thereby increasing the effective solids retention time and improving process performance. This paper reports the initial set of results, which focused on establishing density values of inert/unbiodegradable fractions of activated sludge floc, and the heterotrophic activity measurements of faster settling flocs compared to slower settling flocs. The results indicate that activated sludge from a local wastewater treatment plant had aggregate densities as low as 1.038?g/mL for slower settling floc particles and as high as 1.065?g/mL for faster settling floc particles. Primary effluent “inert+unbiodegradable particulate organic” fractions, which ultimately accumulate in mixed liquor and contribute to the inactive activated sludge floc fraction, had densities of approximately 1.24?g/mL. Mixed liquor that was digested in excess of 90 days to reduce any degradable organics revealed aggregate densities between 1.11 and 1.12?g/mL. Settling column experiments indicated that floc particles settled at rates ranging from less than 5?m/h to greater than 30?m/h. Specific oxygen uptake rates signified that the heterotrophic activity was homogeneous across all settling velocities except those flocs with a settling velocity of less than 5?m/h. These flocs exhibited a specific oxygen uptake rate of between 31 and 110% higher than the remaining floc. Determination of the mass fraction of these flocs indicates that they account for approximately 2% of the overall biomass. This low fraction limits the usefulness of differentially settling unaltered waste activated sludge to recover portions with higher activity.  相似文献   

17.
The performance of a sequencing batch biofilter integrating anaerobic/aerobic conditions in one tank to treat a pharmaceutical wastewater effluent was studied. A pilot reactor, packed with a porous volcanic stone (puzzolane) was used in the study. The reactor operated as a sequencing batch biofilter, SBB, with reaction times varying for the anaerobic stage from 8 to 24 h and for the aerobic one from 4 to 12 h. The volume of exchange was from 16 to 88%. The pharmaceutical wastewater contained organic chemicals including phenols and o-nitroaniline, a concentration of organic matter that varied from 28,400 to 72,200 mg/L (as total COD), 280 to 605 mg N-NH4/L. and 430 to 650 mg SST/L. In order to acclimatize the microorganisms to the industrial wastewater, the organic load was increased stepwise from 1 to 7.7 kg COD/m3/d. The adequate time was obtained when the removal efficiency of COD reached 80%, or more. Maximal removal loads, associated to high removal efficiencies (95-97% as COD), varied from 4.6 to 5.7 kg COD/m3/d. Under these conditions color removal was 80% as Pt-Co units. Microtox analysis was performed to the wastewater and to the anaerobic and aerobic stages. It was observed that the aerobic stage was the responsible for wastewater detoxification. Results showed that the anaerobic/aerobic SBB was able to treat efficiently initial concentrations of the raw effluent up to 28,400 mg COD/L.  相似文献   

18.
Carbon tetrachloride (CT) in a synthetic wastewater was effectively degraded in a 2?l upflow anaerobic sludge blanket reactor during the granulation process by increasing the chemical oxygen demand (COD) and CT loadings. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to mass (F/M) ratio, and specific methanogenic activity (SMA) were also detected during granulation. Over 97% of CT was removed at 37°C, at a COD loading rate of 10?g/L?day. Chemical oxygen demand and CT removal efficiencies of 92 and 88% were achieved when the reactor was operating at CT and COD loading rates of 17.5?mg/L?day and 12.5?g/L?day, respectively. This corresponds to an hydraulic retention time of 0.28?day and an F/M ratio of 0.57?g?COD/g?volatile?suspended?solids?(VSS)?day. In 4?weeks, the seed sludge developed the CT degrading capability that was not very sensitive to shocks. The granular sludge cultivated had a maximum diameter of 2.5?mm and SMA of 1.64?g?COD/g?VSS?day. Glucose biodegradation by CT acclimated anaerobic granules was expressed with competitive inhibition. However the competitive inhibition was not significant since the competitive inhibition coefficient (Ki) was as high as 18.72?mg/L. Kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient), and b (decay coefficient) were determined as 0.6/day, 1.1?mg/L, 0.23?g?VSS/g glucose-COD, and 0.01/day, respectively, based on growth substrate glucose–COD during CT biotransformation. The CT was treated via biodegradation and this contributed to 89% of the total removal. The removal contributions from biomass adsorption, abiotic transformation, and volatilization were negligible. Adsorption and volatilization accounted for only 0.8 and 0.5% of the total removal, respectively.  相似文献   

19.
采用改性磁种——磁性活性炭复合吸附材料结合磁分离法处理河涌水,考察了絮凝剂种类及用量、改性磁种投加量、作用时间、磁场强度等对河涌水中COD的去除效果。结果表明,采用改性磁种——磁性活性炭吸附并结合高梯度磁分离处理河涌水COD效果明显,在聚合氯化铝(PAC)用量10g/L、改性磁种用量30g/L、改性磁种作用时间20min、分离磁场强度8 000kA/m的条件下,原水含COD 90.18mg/L,出水含COD可降至6.59mg/L,除COD率达92.69%,达到《地表水环境质量标准》(GB 3838—2002)中的Ⅰ类水COD标准。  相似文献   

20.
A pilot-scale activated sludge system was started to determine its effectiveness in treating the thermophilic biological effluent from an existing organic chemical industrial wastewater treatment system. Preliminary results demonstrated that an additional 95% biological oxygen demand and 65% dissolved organic carbon removal was achieved. In addition, significant biodegradation of the volatile organic compounds and organic nitrogen was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号