首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the interaction of natural organic matter with iron oxide (goethite) on chlorine decay, disinfection by-product (DBP) formation, and DBP compound speciation [total trihalomethanes (TTHM4) and haloacetic acids (HAA5)]. Batch experiments were conducted with goethite, multiple finished drinking waters, variable chlorine dose, and fixed pH 8. The overall objective was to assess natural organic matter (NOM) adsorption onto goethite and its effect on chlorine decay and DBP formation. Chlorine consumption always increased in the presence of goethite and is attributed to an increase in the reactivity and/or modification of adsorbed NOM. Adsorbed NOM also led to an overall increase in TTHM4, however, HAA5 formation was suppressed during the first 2?h. Chloroform was identified as the increasing species and dichloracetic acid was identified as the suppressed species. This study clearly shows that goethite, which is the predominant iron oxide of pipe deposits, alters both chlorine decay and DBP formation and should be considered when assessing water treatment plant operations and DBP monitoring site selection.  相似文献   

2.
Although disinfection was one of the major public health advances in the last century and continues to be so in the twenty-first century, the disinfectants themselves may react with naturally occurring materials in treated water to form unintended by-products, which may themselves pose risks. This is of particular concern with regard to the use of chlorine. Generation of disinfection by-products (DBPs) has been shown to be a function of various factors including total organic carbon concentration, type of organic precursor, chlorination level, pH, temperature, reaction time, and UV-254 absorbance. Another factor affecting DBP formation is the presence and concentration of the bromide ion in the raw or finished water. Bromine substitutes for chlorine to produce bromine-containing homologues of the more familiar chlorine species. The current list of by-products targeted for regulation contains brominated and mixed bromine-chlorine species of total trihalomethanes and haloacetic acids. These are known to form in bromide-containing waters when chlorinated. To control chlorination DBPs therefore requires an understanding of the factors that influence their formation. This paper presents a model that can be used to predict the formation of chlorinated, brominated, and mixed species compounds based on initial chlorine concentration, chlorine consumption, bromide ion concentration, and pH. The model clearly shows that higher levels of bromide in the water favor the formation of brominated compounds. Brominated compounds also form faster than chlorinated compounds.  相似文献   

3.
The impacts of bromide concentration and natural organic matter (NOM) characteristics on the formation and speciation of disinfection by-products (DBPs) in chlorinated NOM fractions were investigated. A total of 20 bulk water NOM fractions with a wide range of specific ultraviolet (UV) absorbance (SUVA254) values were obtained from a source water employing XAD-8 or XAD-4 resin adsorption in completely mixed batch reactors. SUVA was not a good predictor of DBP [trihalomethanes (THMs), haloacetic acids (HAAs), and adsorbable organic halogens (AOX)] formation and speciation. The destruction in the UV254 absorbance from chlorination did not correlate with DBP formation at any bromide level. NOM moieties which do not absorb UV light at 254?nm significantly contributed to DBP formation. Mass balance calculations on halogens using THMs, HAAs, and AOX data indicated that significant amounts of DBPs (>54% of AOX) other than THMs and HAAs were formed in NOM fractions with 60–110?μg/L bromide concentration. The relative occurrence of such other halogenated by-products decreased with increasing bromide concentrations up to 500?μg/L level. NOM in the studied water was more susceptible to the formation of brominated THM species as opposed to brominated HAAs. At constant dissolved organic carbon concentration, chlorine dose and pH, increasing bromide concentrations in NOM fractions increased the total concentrations of DBPs and resulted in a shift toward the formation of brominated species. Further, increasing bromide concentrations increased the spectrum of detected species (i.e., occurrence of all nine HAAs) and provided a competitive advantage to THM and HAA precursors in NOM over precursors of other DBPs.  相似文献   

4.
The effect of conventional and booster chlorination on chlorine residuals and trihalomethane (THM) formation in drinking water distribution systems was modeled using the EPANET hydraulic modeling software. The model results suggest that booster chlorination may allow utilities to meet disinfection goals better by carrying chlorine residuals to remote points in the distribution system while lowering the total mass of chlorine applied to the system. The model results suggest that booster chlorination may provide the greatest advantages to points in the distribution system located near storage tanks by providing a more consistent chlorine residual and possibly reducing THM formation. A new version of the EPANET model, the EPANET Multispecies model, was also used to compare chlorine decay due to reactions in the bulk fluid and reactions occurring at the pipe wall. The results suggest that chlorine decay due to wall reactions can be very significant at remote points in the distribution system. Additionally, if THMs are assumed to form primarily through reactions in the bulk fluid, use of the new EPANET Multispecies software allows for calculation of THM formation based solely on chlorine reactions in the bulk fluid rather than on overall chlorine decay.  相似文献   

5.
A case study is presented on the relation between interflow travel time and reservoir stratification. A simulation model is calibrated and validated for the Wachusett Reservoir in Massachusetts. The Reservoir has a major controlled inflow which traverses the reservoir as an interflow. The model is used with a range of alternate inflow schedules and the resulting travel time of the interflow is examined. The inflow density is within the range of densities found in the reservoir thermocline and the inflow rate is sufficient to maintain a continuous interflow. Under these conditions it is found that a linear relation exists between the average interflow travel time, as measured by the arrival of a specified fraction of interflow water at the outlet, and the degree of stratification, as measured by the maximum difference in reservoir thermocline temperature, at the initiation of the inflow. The results may be useful for operation of the reservoir under study subject to continued validation of the simulation model used.  相似文献   

6.
Modern water treatment must maintain an acceptable balance between the microbial safety of potable water supply, the costs of treatment, and the formation of potentially harmful disinfection by-products (DBPs). In order to achieve the optimum balance, it is essential to understand and predict both the formation of DBP and the decay of chlorine, in relation to source water, treatment processes, storage, and supply. Reported herein are new data which demonstrate the lack of durability, precision, and accuracy associated with earlier empirical chlorine decay rate equations. This work develops an improved methodology for the prediction of variation in chlorine decay rates in distribution systems enabling practical, cost-effective prediction of the effects of both seasonal variations and management interventions on chlorine levels at treatment works and in distribution systems.  相似文献   

7.
In many areas of Northern and Western Alaska, small streams and shallow lakes serve as community raw water supplies. These water supplies freeze completely during winter. In order to supply drinking water during the 6–9 month winter, communities store water that was treated during summer. A chlorine residual is maintained in the stored water. Raw water sources derived from surface water may be heavily laden with dissolved organic matter. At utilities where organic matter escapes treatment, the potential for accumulation of disinfection by-products (DBPs) during storage is a significant health concern. The following study was performed to evaluate this potential threat. Water was collected from five operating utilities, four that normally store water for 6–9 months and one that produces drinking water year-round. Raw, filtered (i.e., unchlorinated) and “finished” (i.e., filtered and chlorinated) water samples were collected during the summer pumping season and stored in the laboratory for 8 months. In order to mimic practice in the field, the chlorine residual was maintained in the finished water for the full storage period. While the concentration of DBPs in the finished water varied over the study period, there was not a statistically significant trend from the third to the eighth month of storage. The observed DBP values were strongly a function of the type of treatment system used. Those systems passing more organic matter had higher DBP values throughout the storage period. The ultraviolet absorbance at 254 nanometers ?start(UV254)end? decreased continuously in the finished water coincident with chlorine consumption. ?startUV254end?, often used as a surrogate for DBPs, remained constant during the entire storage periodin raw and filtered water samples. Filtered water that was stored prior to chlorination accumulated fewer DBPs than finished water that was continuously chlorinated during the storage period. This result suggests that storing filtered water instead of finished water for long periods would limit DBP exposure to consumers. This conclusion was based on a comparison of DBP formation potentials (i.e., raw and filtered water) to DBPs (i.e., finished water). It is important to note that DBP formation potentials are based on a ?start24?hend?chlorine contact time. If long term storage were provided for filtered water, a smaller volume of secondary storage would still be needed to provide contact time for disinfection.  相似文献   

8.
Drinking water utilities may be required to change disinfectant to improve water quality and meet more stringent disinfection regulations. This research was conducted to assess and compares chlorine dioxide to free chlorine and chloramines on bacterial water quality monitored within model distribution systems (i.e., annular reactors). Following colonization with nondisinfected water, annular reactors containing either polycarbonate or cast iron coupons were treated with free chlorine, chlorine dioxide or chloramines. Two disinfectant doses (low/high) were tested for each disinfectant. Under specific environmental conditions, bacterial inactivation varied as a function of the disinfectant type and dose, sample type (bulk water versus biofilm bacteria) and coupon material. The ranking by efficiency was as follows: chlorine dioxide > chlorine > chloramines. On preformed biofilms of 106–107?cfu/cm2, the continuous application of a disinfectant led to a log removal of heterotrophic bacteria concentrations for suspended and biofilm bacteria ranging from 1.1 to 4.0, and from 0.2 to 2.5, respectively. Doubling the amount of disinfectant doses led to an additional log inactivation of 1–2.5 of heterotrophic bacteria levels. This study demonstrates that bacterial inactivation in distribution systems is governed by various inter-related parameters. The data indicate that chlorine dioxide represents a viable alternative for secondary disinfection in distribution systems.  相似文献   

9.
A three-dimensional computational fluid dynamics model is used to estimate the hydraulic residence time for a portion of the Wachusett Reservoir in central Massachusetts. The basin under consideration has several major inflows and exhibits complex flow patterns. The basin is modeled using the FLUENT software package with particles used to track travel time in a steady-state flow field. A tetrahedral mesh with over 1.6 million cells is used with accurate depiction of basin bathymetry and inlet and outlet geometries. Modeling is performed to simulate behavior during a period when conditions are isothermal. It is determined that mean hydraulic residence time is 3–4?days; approximately half of what would be expected assuming strictly plug flow. The presence of a primary flow path, large scale eddies and stagnation zones contribute to the faster travel times. Reductions in inflow rates produce increased residence times and significant changes in flow patterns.  相似文献   

10.
This research developed a differential kinetic model to predict the partial degradation of natural organic matter (NOM) during ultraviolet plus hydrogen peroxide (UV/H2O2) advanced oxidation treatment. The absorbance of 254?nm UV, representing chromophoric NOM (CNOM) was used as a surrogate to track the degradation of NOM. To obtain reaction rate constants not available in the literature, i.e., reactions between the hydroxyl radical (?OH) and NOM, experiments were conducted with “synthetic” water, using isolated Suwannee River NOM, and parameter estimation was applied to obtain the unknown model parameters. The reaction rate constant for the reaction between ?OH and total organic carbon (TOC), k?OH,TOC, was estimated at 1.14(±0.10)×104??L?mg-1?s-1, and the reaction rate constant between ?OH and CNOM, k?OH,CNOM, was estimated at 3.04(±0.33)×104??L?mol-1?s-1. The model was evaluated on two natural waters to predict the degradation of CNOM and H2O2 during UV/H2O2 treatment. Model predictions of CNOM degradation agreed well with the experimental results for UV/H2O2 treatment of the natural waters, with errors up to 6%. For the natural water with additional alkalinity, the model also predicted well the slower degradation of CNOM during UV/H2O2 treatment, owing to scavenging of ?OH by carbonate species. The model, however, underpredicted the degradation of H2O2, suggesting that, when NOM is present, mechanisms besides the photolysis of H2O2 contribute appreciably to H2O2 degradation.  相似文献   

11.
Predicting Chlorine Residuals and Formation of TTHMs in Drinking Water   总被引:1,自引:0,他引:1  
Chlorination is the most widely practiced form of disinfection in the United States. It is highly effective against most microbiological contaminants. However, there is concern that the disinfection by-products (DBPs) formed by the use of chlorine might be carcinogenic. One class of DBPs that are formed and the only class of DBPs that currently are regulated are total trihalomethanes (TTHMs). Therefore, much effort is being expended in developing models that can be used to predict both TTHMs and chlorine residual levels in treated drinking water. This paper presents a model that predicts both TTHMs and chlorine residuals based on the consumption of chlorine and can be used to assist in evaluating the complex balance between microbial and DBP risks associated with disinfecting drinking water with chlorine. The parameters of the model have been found to be functions of total organic carbon, pH, temperature, and initial chlorine residual level. Bromide and the subsequent formation of brominated by-products were not considered in this paper.  相似文献   

12.
确定了医院废水采用二氧化氯进行消毒。具有消毒效果好、符合污染物国家一级排放标准(GB8978—1996)、运行费用低等特点。本实践给同类污水消毒,提供了借鉴作用。  相似文献   

13.
BACKGROUND: Many Legionella infections are acquired through inhalation or aspiration of drinking water. Although about 25% of municipalities in the USA use monochloramine for disinfection of drinking water, the effect of monochloramine on the occurrence of Legionnaires' disease has never been studied. METHODS: We used a case-control study to compare disinfection methods for drinking water supplied to 32 hospitals that had had outbreaks of Legionnaires' disease with the disinfection method for water supplied to 48 control-hospitals, with control for selected hospital characteristics and water treatment factors. FINDINGS: Hospitals supplied with drinking water containing free chlorine as a residual disinfectant were more likely to have a reported outbreak of Legionnaires' disease than those that used water with monochloramine as a residual disinfectant (odds ratio 10.2 [95% CI 1.4-460]). This result suggests that 90% of outbreaks associated with drinking water might not have occurred if monochloramine had been used instead of free chlorine for residual disinfection (attributable proportion 0.90 [0.29-1.00]). INTERPRETATION: The protective effect of monochloramine against legionella should be confirmed by other studies. Chloramination of drinking water may be a cost-effective method for control of Legionnaires' disease at the municipal level or in individual hospitals, and widespread implementation could prevent thousands of cases.  相似文献   

14.
The objective of this paper is to evaluate the change in Bacillus subtilis spore survival and dimensions following ultraviolet and chlorine disinfection in water. Disinfection was monitored by using tools such as atomic force microscopy (AFM), particle sizing by the electrozone sensing technique and fluorescence of spores after staining with an optical brightener. Results indicated that there was a change in the adsorbed fluorescence following chlorine; however, the magnitude of this change was only approximately twofold at 90% of spore kill. In addition, changes in spore particle-size distribution following chlorine occur at above 99.9% of spore kill. Even the roughness (RMS), width, and length of spores as measured by AFM change only after about 99% of spore killing with chlorine. Use of optical brighteners, AFM, and sizing are not sensitive enough for detecting the disinfection of chlorine-resistant spores and as expected no changes occurred with ultraviolet treated spores. Even though, these techniques may have the potential for determining oxidative disinfection and for the development of monitors and sensors of chemical disinfection for chlorine-sensitive microorganisms.  相似文献   

15.
The purpose of this study was to quantify the potential level of protection that secondary disinfection may provide in response to an intrusion event. Although several uncertainties exist regarding intrusion events, this study presents an analysis of the inactivation provided by disinfectant residuals by using a distribution system model, inactivation and disinfectant decay models, and conservative assumptions based on available data. A variety of conditions were modeled, including a range of water quality parameters (pH, temperature); inactivation of two microorganisms, Giardia and E. coli O157:H7; and intrusion water dilution ratios. Despite the assumptions inherent in the model, several generalizations were derived from the study. A free chlorine residual of 0.5?mg/L may be insufficient to provide adequate control of disinfectant-resistant Giardia even at low pH (6.5) and high temperature (25°C) conditions that enhance chlorine effectiveness. For E. coli, an organism of “average” disinfectant resistance relative to others, a residual of 0.5?mg/L may provide ample protection against intrusion even assuming that the chlorine residual is reduced within several minutes, such as would be predicted to occur with sewage intrusion at levels below 1% of the total flow. Importantly, chloramines may have a negligible benefit in terms of protecting against intrusion for even relatively susceptible organisms such as E. coli. Consequently, systems should consider protection against intrusion when choosing their secondary disinfectant.  相似文献   

16.
分析了马钢第一能源总厂在生活水消毒中使用二氧化氯替代氯气在安全方面存在的问题,提出了在推广应用中必须完善的措施。  相似文献   

17.
Trihalomethane (THM), haloacetic acid (HAA5), and total organic carbon (TOC) data provided by the Missouri Dept. of Natural Resources for drinking water treatment systems in the State of Missouri was analyzed for the years 1997–2001. These data indicated that a significant portion of systems exceeded the current regulatory limits of 80 and 60?μg/L for THM and HAA5 in these years. The vast majority of the treatment plants exceeding the regulatory limits were small plants with service populations less than 10,000 people. No significant temporal trend in either THM or HAA5 was noted for the years 1997–2001. This work suggests that the proposed use of a locational running annual average may have a significant effect on compliance. The use of chloramines (combined chlorine) versus free chlorine (HOCl/OCl?) as a residual disinfectant was shown to significantly reduce both THM and HAA5 in systems that treat their own water (primary systems), but did not have a significant effect in systems which purchase their water from primary systems (secondary systems). Comparison of finished water at the treatment plant versus in the distribution system suggested that a majority of THM and HAA5 may be produced within the plant as opposed to the distribution system. Hence, reducing these chlorinated disinfection byproducts within the treatment plant itself should be a key focus for achieving compliance, and supports Environmental Protection Agency disinfection byproducts compliance guidelines using enhanced coagulation.  相似文献   

18.
A reliable viability assay for Giardia is required for the development of disinfection process design criteria and pathogen monitoring by water treatment utilities. Surveys of single-staining nucleic acid dyes (stain dead parasites only), and double-staining vital dye kits from Molecular Probes (stain live and dead parasites) were conducted to assess the viability of untreated, heat-killed, and chemically inactivated Giardia muris cysts. Nucleic acid staining results were compared to those of in vitro excystation and animal infectivity. Nucleic acid stain, designated as SYTO-9, was considered the best among the single-staining dyes for its ability to stain dead cysts brightly and its relatively slow decay rate of visible light emission following DNA binding. SYTO-9 staining was correlated to animal infectivity. A Live/Dead BacLight was found to be the better of 2 double-staining viability kits tested. Logarithmic survival ratios based on SYTO-9 and Live/Dead BacLight were compared to excystation and infectivity results for G. muris cysts exposed to ozone or free chlorine. The results indicate that SYTO-9 and Live/Dead BacLight staining is stable following treatment of cysts with chemical disinfectants.  相似文献   

19.
Nanoparticles have emerged as promising adsorbents for water purification. In this study, nanoscale carbon black was employed to remove natural organic matter (NOM) from water in the presence and absence of coagulation. Standard Suwannee River NOM was employed as the targeted pollutant. In the absence of coagulation, more than 60% NOM removal was achieved by carbon black adsorption. A higher hydrogen ion concentration (pH) (3–5) was favorable for NOM removal. More than 35% NOM was removed by carbon black adsorption in the first 20 min, and the adsorption of NOM onto carbon black occurred within about 2 h. Proper stirring was essential for the mixture of NOM and carbon black, while insufficient stirring or overstirring decreased NOM removal efficiency. When low dosages of coagulants were used in combination with carbon black at pH 6–7, the removal efficiency of NOM increased significantly. Depending on the coagulant, the sequencing of adsorption and coagulation can be important. Almost 90% NOM was removed in 15 min by carbon black adsorption and alum coagulation, which is a higher removal than for conventional treatment. This study indicated that carbon black might be an important adsorbent for NOM removal in water treatment in combination with low doses of alum.  相似文献   

20.
This note presents a simple model to quantify the preloading effect of naturally occurring organic matter (NOM) in water on the adsorption capacity of activated carbon for a trace synthetic organic chemical (SOC). The model was developed from the Dubinin–Astakhov (DA) equation based on the assumption that the NOM preloading irreversibly reduced the limiting adsorption pore volume for the target SOC. Given that the DA-n value equal to one, the model reduces to a form similar to the one obtained by modifying the Freundlich equation directly. By assuming that the reduction of the limiting adsorption pore volume was proportional to the volume of NOM adsorbed, the NOM preloading effect was correlated directly to the amount of total organic carbon preloaded on the carbon. The resulting model was then compared with the experimental data in the literature. This simple model may be useful for certain practical applications that require only the estimation of the NOM preloading effect on the adsorption capacity of a target SOC from natural water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号