首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

2.
Carbon dioxide among natural refrigerants has gained a considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In-tube evaporation heat transfer characteristics of carbon dioxide were experimentally investigated and analyzed as a function of evaporating temperature, mass flux, heat flux and tube geometry. Heat transfer coefficient data during evaporation process of carbon dioxide were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 and 9.52 mm. The tests were conducted at mass fluxes of from 212 to 656 kg m−2 s−1, saturation temperatures of from 0 to 20 °C and heat fluxes of from 6 to 20 kW m−2. The difference of heat transfer characteristics between smooth and micro-fin tubes and the effect of mass flux, heat flux, and evaporation temperature on enhancement factor (EF) and penalty factor (PF) were presented. Average evaporation heat transfer coefficients for a micro-fin tube were approximately 150–200% for 9.52 mm OD tube and 170–210% for 5 mm OD tube higher than those for the smooth tube at the same test conditions. The effect of pressure drop expressed by measured penalty factor of 1.2–1.35 was smaller than that of heat transfer enhancement.  相似文献   

3.
Two-phase pressure drop of R-410A in horizontal smooth minichannels   总被引:2,自引:0,他引:2  
Convective boiling pressure drop experiments were performed in horizontal minichannels with a binary mixture refrigerant, R-410A. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively. This test section was uniformly heated by applying electric current directly to the tubes. Experiments were performed at inlet saturation temperature of 10 °C, mass flux ranges from 300 to 600 kg m−2 s−1 and heat flux ranges from 10 to 40 kW m−2. The current study showed the significant effect of mass flux and tube diameter on pressure drop. The experimental results were compared against 15 two-phase pressure drop prediction methods. The homogeneous model predicted well the experimental pressure drop, generally. A new pressure drop prediction method based on the Lockhart–Martinelli method was developed with 4.02% mean deviation.  相似文献   

4.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

5.
The objective of this paper is to investigate the influence of nanoparticles on the heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting heat transfer performance of refrigerant-based nanofluid. For the convenience of preparing refrigerant-based nanofluid, R113 refrigerant and CuO nanoparticles were used. Experimental conditions include an evaporation pressure of 78.25 kPa, mass fluxes from 100 to 200 kg m−2 s−1, heat fluxes from 3.08 to 6.16 kW m−2, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the heat transfer coefficient of refrigerant-based nanofluid is larger than that of pure refrigerant, and the maximum enhancement of heat transfer coefficient is 29.7%. A heat transfer correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 93% of the experimental data within the deviation of ±20%.  相似文献   

6.
Convective boiling heat transfer experiments were performed in horizontal minichannels with binary mixture refrigerant, R-410A. The test section is made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively, and is uniformly heated by applying electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 10–30 kW m−2, a mass flux range of 300–600 kg m−2 s−1, and quality ranges of up to 1.0. The experimental results were mapped on Wang et al.'s (C.C. Wang, C.S. Chiang, D.C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental, Thermal and Fluid Science 15 (1997) 395–405) and Wojtan et al.'s (L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer 48 (2005) 2955–2969) flow pattern maps to observe the flow regimes. Laminar flow appears in flow with minichannels. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A was developed with 11.20% mean deviation; it showed a good agreement between the measured data and the calculated heat transfer coefficients.  相似文献   

7.
This paper presents an overview of the issues and new results for in-tube condensation of ammonia in horizontal round tubes. A new empirical correlation is presented based on measured NH3 in-tube condensation heat transfer and pressure drop by Komandiwirya et al. [Komandiwirya, H.B., Hrnjak, P.S., Newell, T.A., 2005. An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of ammonia with and without miscible oil in smooth and enhanced tubes. ACRC CR-54, University of Illinois at Urbana-Champaign] in an 8.1 mm aluminum tube at a saturation temperature of 35 °C, and for a mass flux range of 20–270 kg m−2 s−1. Most correlations overpredict these measured NH3 heat transfer coefficients, up to 300%. The reasons are attributed to difference in thermophysical properties of ammonia compared to other refrigerants used in generation and validation of the correlations. Based on the conventional correlations, thermophysical properties of ammonia, and measured heat transfer coefficients, a new correlation was developed which can predict most of the measured values within ±20%. Measured NH3 pressure drop is shown and discussed. Two separated flow models are shown to predict the pressure drop relatively well at pressure drop higher than 1 kPa m−1, while a homogeneous model yields acceptable values at pressure drop less than 1 kPa m−1. The pressure drop mechanism and prediction accuracy are explained though the use of flow patterns.  相似文献   

8.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

9.
Flow pattern and heat transfer during evaporation in a 10.7 mm diameter smooth tube and a micro-fin tube are presented. The tubes were tested in the ranges of mass flux between 163 and 408 kg m−2 s−1, and heat flux between 2200 and 56 000 W m−2. The evaporation temperature was 6 °C. Flow maps for both the tubes are plotted in the coordinates of mass flux and vapor quality. The relations of flow pattern and local heat transfer coefficient are discussed. The heat transfer coefficients for intermittent and annular flows in both the smooth tube and the micro-fin tube are shown to agree well with Gungor and Winterton's correlation with modified constants.  相似文献   

10.
This paper presents heat transfer data for a multiport minichannel heat exchanger vertically mounted as an evaporator in a test-rig simulating a small water-to-water heat pump. The multiport minichannel heat exchanger was designed similar to a shell-and-tube type heat exchanger, with a six-channel tube of 1.42 mm hydraulic diameter, a tube-side heat transfer area of 0.777 m2 and a shell-side heat transfer area of 0.815 m2. Refrigerant propane with a desired vapour quality flowed upward through the tubes and exited with a desired superheat of 1–4 K. A temperature-controlled glycol solution that flowed downward on the shell-side supplied the heat for the evaporation of the propane. The heat transfer rate between the glycol solution and propane was controlled by varying the evaporation temperature and propane mass flow rate while the glycol flow rate was fixed (18.50 l min−1). Tests were conducted for a range of evaporation temperatures from −15 to +10 °C, heat flux from 2000 to 9000 W m−2 and mass flux from 13 to 66 kg m−2 s−1. The heat transfer coefficients were compared with 14 correlations found in the literature. The experimental heat transfer coefficients were higher than those predicted by many of the correlations. A correlation which was previously developed for a very large and long tube (21 mm diameter and 10 m long) was in good agreement with the experimental data (97% of the data within ±30%). Several other correlations were able to predict the data within a reasonable deviation (within ±30%) after some adjustments to the correlations.  相似文献   

11.
Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristic and pressure drop of carbon dioxide flowing upward in vertical smooth and micro-fin tubes were investigated by experiment with regard to evaporating temperature, mass flux and heat flux. The vertical smooth and micro-fin tubes with outer diameter (OD) of 5 mm and length of 1.44 m were selected as a test section to measure the evaporative heat transfer coefficient. The tests were conducted at mass fluxes from 212 to 530 kg/(m2 s), saturation temperatures from −5 to 20 °C and heat fluxes from 15 to 45 kW/m2, where the test section was heated by a direct heating method. The differences of heat transfer characteristics between the smooth and the micro-fin tubes were analyzed with respect to enhancement factor (EF) and penalty factor (PF). Average evaporation heat transfer coefficients for the micro-fin tube were approximately 111–207% higher than those for the smooth tube at the same test conditions, and PF was increased from 106 to 123%.  相似文献   

12.
In the present work, the spray absorption method is studied for the absorption of ammonia refrigerant vapour by lithium nitrate–ammonia solutions. Mass transfer coefficients attainable using the spray absorption method are estimated. In this study the low-pressure absorber of a double-stage absorption refrigeration system is considered. Results show that the mass transferred is maximum (about 60% of the total) during the deceleration period of the drops. This period represents about 13.4% of the time required to reach the equilibrium state at the end of the absorption chamber. The results show that a time-average mass transfer coefficient equal to km=18.6×10−5 m s−1 may be attained.  相似文献   

13.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

14.
Shell-side heat transfer coefficients of individual tubes for ammonia/lubricant mixture boiling on a 3 × 5 enhanced tube bundle were measured, enabling a detailed study of tube bundle effect under the influences of inlet quality, concentration of miscible lubricant (co-polymer of polyalkylene glycol, PAG), saturation temperature, and heat flux. Tests were conducted in the range of heat flux from 3.2 to 32.0 kW/m2, simulated inlet quality from 0.0 to 0.4, saturation temperature from −13.2 to +7.2 °C, and lubricant concentration from 0 to 10%. The data show that bundle effect is more significant at a higher saturation temperature. Most of the data in the bottom row are lower than the single-tube heat transfer coefficient data at a low saturation temperature. Lubricant renders the heat transfer coefficient lower in lower rows and higher in higher rows, therefore a larger range of data variation.  相似文献   

15.
An experimental investigation of condensation heat transfer in 9.52 mm O.D. horizontal copper tubes was conducted using R22 and R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was cooled by the heat transfer fluid (cold water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m2 was maintained throughout the experiment and refrigerant quality varied from 0.9 to 0.1. The condensation test results at 45 °C were reported for 40–80 kg/h mass flow rate. The local and average condensation coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average condensation coefficients of R22 and R410A for the microfin tubes were 1.7–3.19 and 1.7–2.94 times larger than those in smooth tube, respectively.  相似文献   

16.
Experiments on flow condensation have been conducted with both pure R32, R134a and their mixtures inside a tube (10 m long, 6 mm ID), with a mass flux of 131–369 kg m−2s−1 and average condensation temperature of 23–40°C. The experimental heat transfer coefficients are compared with those predicted from correlations. The maximum mean heat transfer coefficient reduction (from a linear interpolation of the single component values) occurs at a concentration of roughly 30% R32 for the same mass flux basis, and is approximately 20% at Gr = 190 kg m−2s−1, 16% at Gr = 300 kg m−2s−1. Non-ideal properties of the mixture have a certain, but relatively small, influence on the degradation. Among others, temperature and concentration gradients, slip, etc. are also causes of heat transfer degradation.  相似文献   

17.
The absorber is an important component in absorption machines and its characteristics have significant effect on the overall efficiency of absorption machines. This article reports on the results of experimental studies on the characteristics for a falling film absorber which is made up of 24 row horizontal smooth tubes. It shows that while the mass transfer coefficient is increased with the increase of spray density, the heat transfer coefficient is increased only in small spray density range. There is an optimum spray density between 0.005 and 0.055 kg s−1 m−1 spray density at which the heat transfer coefficient is maximum. The heat transfer coefficient (Nusselt number), which is traditionally expressed using Reynolds number and Prandtl number, was modified taking the effect of inlet solution concentration into account. The results can be used to optimize the future design of absorption machines having a falling film absorber and using LiBr/H2O as working fluid.

Abstract

L'absorbeur est un composant important des systèmes à absorption et ses caractéristiques exercent des effets significatifs sur l'efficacité des machines à absorption. Cet article présent des résultats obtenus dans des études expérimentales sur les caracteristiques d'un absorbeur à film tombant composé d'une rangée de 24 tubes lisses horizontaux. Les auteurs montrent que le coefficient de transfert de masse augmente avec la densité de pulvérisation, le coefficient de transfert de chaleur augmente uniquement dans la gamme des densités de pulvérisation faibles. Il existe une densité de pulvérisation optimale (0,005–0,055 kg s−1 m−1) pour laquelle le coefficient de transfert de chaleur est maximal. Le coefficient de transfert de chaleur (nombre de Nusselt), qui est généralement exprimé en utilisant le nombre de Reynolds et le nombre de Prandtl, a été modifié en tenant compte l'effet de la concentration de la solution à l'entrée. A l'avenir, les résultats peuvent être utilisés pour optimiser la conception des systèmes à absorption à absorbeur à film tombant utilisant le LiBr/H2O comme fluide actif.  相似文献   

18.
The introduction of chlorine-free refrigerants to the market requires experimental investigations of their behaviour in heat pumps and refrigerators. One particular area of interest is the effect of the new oils on the heat transfer in evaporators and condensers. Oil can either increase or decrease the heat transfer coefficient. This paper presents the results from an experimental investigation of the effect of three different ester-based oils on the heat transfer of HFC134a in a horizontal evaporator. The tests were carried out at heat fluxes between 2 and 8 kW m−2 (corresponding to mass fluxes between approximately 40 and 170 kg s−1 m−2). The evaporation temperature was varied from−10 to +10°C. The global oil concentration ranged from 0 to 4.5 mass percentage based on the total liquid flow. The heat transfer coefficient decreased in most of the cases. The results indicate that the decrease seems to depend on the viscosity of the oil. The decrease can fairly well be estimated with the correlation for pure refrigerants by Shah if the viscosity of the mixture is used in the calculations. The data for the oil-contaminated refrigerant also agree well with data for pure refrigerants in a plot of αtplo* versus the inverse Martinelli-Lockhart parameter when αlo* is calculated with a modified Dittus-Boelter correlation and the mixture viscosity is used in the calculations. The heat transfer is found to increase when introducing oil in the special cases where the flow rate is low and the viscosity is low (oil A, 2 and 4 kW m−2 oil B, 6kW m−2 at +10°C). This is most likely due to surface tension effects. It has been suggested that the increased surface tension leads to a better tube wetting and thus an increased heat transfer.  相似文献   

19.
The purpose of this study is to experimentally investigate forced convective boiling. The heat transfer coefficients of pure refrigerant R22 and non azeotropic refrigerant mixture R407C were measured in both a smooth tube and a microfin tube. The tests have been carried out with a uniform heat flux all along the tube length. The refrigerant mass flux was varied from 100 to 300 kg m−2 s−1 and heat fluxes from 10 to 30 kW m−2. Local heat transfer coefficients depend strongly on heat flux at a low quality and on mass fluxes at a high quality. When compared to smooth tube, the microfin tubes exhibit a significant heat transfer enhancement, up to 180%. In comparison to R22, the R407C heat transfer coefficients of smooth and microfin tubes are 15 to 35% lower, respectively. The best heat transfer enhancement is obtained at low heat flux and mass flow rate.  相似文献   

20.
Evaporation heat transfer experiments for two refrigerants, R-407C and R-22, mixed with polyol ester and mineral oils were performed in straight and U-bend sections of a microfin tube. Experimental parameters include an oil concentration varied from 0 to 5%, an inlet quality varied from 0.1 to 0.5, two mass fluxes of 219 and 400 kg m−2s−1 and two heat fluxes of 10 and 20 kW m−2. Pressure drop in the test section increased by approximately 20% as the oil concentration increased from 0 to 5%. Enhancement factors decreased as oil concentration increased under inlet quality of 0.5, mass flux of 219 kg m−2 s−1, and heat flux of 10 kW m−2, whereas they increased under inlet quality of 0.1, mass flux of 400 kg m−2 s−1, and heat flux of 20 kW m−2. The local heat transfer coefficient at the outside curvature of an U-bend was larger than that at the inside curvature of a U-bend, and the maximum value occurred at the 90° position of the U-bend. The heat transfer coefficient was larger in a region of 30 tube diameter length at the second straight section than that at the first straight section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号