首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted to investigate the antimicrobial effect of sodium lactate (NaL) (0, 1.5, 3.0, and 4.5%) on the survival of Escherichia coli O157:H7 in 93% lean ground beef. Samples inoculated with a mixture of four strains of E. coli O157:H7 (10(7) to 10(8) CFU/g) were subjected to immersion heating in a water bath stabilized at 55, 57.5, 60, 62.5, or 65 degrees C. Results of statistical analysis indicated that the heating temperature was the only factor affecting the decimal reduction times (D-values) of E. coli O157:H7 in 93% lean ground beef. The change in temperature required to change the D-value (the z-value) was determined as 7.6 degrees C. The thermal resistance of this organism was neither affected by the addition of NaL nor by the interactions between NaL and temperature. Adding NaL to ground beef to reduce the thermal resistance of E. coli O157:H7 is therefore not recommended.  相似文献   

2.
Rates of inactivation of a five-strain mixture of green fluorescent protein-labeled Escherichia coli O157:H7 in autoclaved and unautoclaved commercial cow manure compost with a moisture content of ca. 38% were determined at temperatures of 50, 55, 60, 65, and 70 degrees C. Trypticase soy agar with ampicillin was determined to be the best medium for the enumeration of heat-injured and uninjured cells of green fluorescent protein-labeled E. coli O157:H7. The results obtained in this study revealed that in autoclaved compost, E. coli O157:H7 reductions of ca. 4 log CFU/g occurred within 8 h, 3 h, 15 min, 2 min, and < 1 min at 50, 55, 60, 65, and 70 degrees C, respectively. At 65 and 70 degrees C, considerably less time was required to kill the pathogen in unautoclaved compost than in autoclaved compost. Decimal reduction times (D-values) for autoclaved compost at 50, 55, 60, 65, and 70 degrees C were 137, 50.3, 4.1, 1.8, and 0.93 min, respectively, and D-values for unautoclaved compost at 50, 55, and 60 degrees C were 135, 35.4, and 3.9 min, respectively. Considerable tailing was observed for inactivation curves, especially at 60, 65, and 70 degrees C. These results are useful for identifying composting conditions that will reduce the risk of the transmission of E. coli O157:H7 to foods produced in the presence of animal fecal waste.  相似文献   

3.
4.
Studies evaluated thermal inactivation of Escherichia coli O157:H7 inoculated at different depths of simulated blade-tenderized non-intact steaks. Fresh beef slices (0.3 or 0.6 cm thick) were stacked on top of each other to form 2.4 or 1.2 cm thick steaks. Steaks were blade-tenderized and then inoculated with rifampicin-resistant Escherichia coli O157:H7 (8 strain mixture; 4 log CFU/cm(2)) on the surface or between slices, vacuum-packaged, and stored at 4 or -20 °C for 5 d before cooking. Steaks were cooked by pan-broiling or roasting to a geometric center temperature of 60 °C. Frozen samples were either cooked from the frozen state or after thawing to approximately 4 or 25 °C. In steaks inoculated on the external surface and cooked by pan-broiling, pathogen survivors recovered from thinner (1.2 cm) steaks were greater (P < 0.05) than those recovered from thicker (2.4 cm) steaks. Cooking steaks from a frozen state or after thawing (4 or 25 °C) did not (P ≥ 0.05) affect extent of pathogen inactivation. Survivors after pan-broiling of 2.4 cm thick steaks increased (P < 0.05) from 0.3 to 1.3 log CFU/cm(2) for surface-inoculated steaks to 2.5 to 3.2 log CFU/cm(2) for samples inoculated at the center (1.2 cm depth). In comparison, overall thermal destruction of the pathogen in steaks cooked by roasting was less, and survivor counts were generally not different (P ≥ 0.05) at each depth of inoculation. These data should be useful in development of lethality guidelines to ensure safe consumption of non-intact meat products. PRACTICAL APPLICATION: Results of this study should be useful for developing cooking guidelines, for foodservice establishments and consumers, to ensure safe consumption of non-intact meat products.  相似文献   

5.
Alfalfa seeds inoculated with five strains of Salmonella or Escherichia coli O157:H7 were subjected to dry heat at 55 degrees C for up to 8 days. Five-log reductions in Salmonella or E. coli O157:H7 on seeds were observed. No pathogens were detected on the sprouted seeds, which were initially inoculated with ca. 2 log CFU/g of Salmonella or more than 8 log CFU/g of E. coli O157:H7. The percentages of germination of the alfalfa seeds did not significantly decrease after 6 days of heating at 55 degrees C. These results showed that heat treatment of alfalfa seeds at 55 degrees C for up to 6 days was effective in enhancing the safety of alfalfa sprouts without affecting germination significantly.  相似文献   

6.
Thermal inactivation kinetics of individual cocktails of Escherichia coli O157:H7, or of Salmonella meat isolates or seafood isolates were determined in catfish and tilapia. Determinations were done at 55, 60 and 65 °C using a circulating-water bath and calculated using linear regression analysis. Salmonella seafood and meat isolates D-10 values on the finfish were the same and ranged from 425 to 450, 27.1 to 51.4, 2.04-3.8 s (z = 4.3 °C) at 55, 60 and 65 °C, respectively. The E. coli O157:H7 D-10 values ranged from 422 to 564, 45.2 to 55.5 and 3.3-4.2 s (z = 4.3 °C) at 55, 60 and 65° C, respectively. The only statistical difference (P ≤ 0.05) was found when comparing the D-10 values for E. coli O157:H7 at 55 °C on catfish and tilapia. The other D-10 values for the Salmonella at all temperatures and E. coli O157:H7 at 60 and 65 °C on the catfish or tilapia showed no statistical difference. D-10 values for the catfish and tilapia were significantly lower than the reported values in other food systems, but the z-values were within the literature reported range. These D-10 values can be used to determine cooking parameters of finfish.  相似文献   

7.
Six human isolates of Escherichia coli O157:H7 and E. coli (ATCC 11229) were used to determine the concentrations of free chlorine and exposure times required for inactivation. Free chlorine concentrations of 0.25, 0.5, 1.0, and 2.0 ppm at 23 degrees C were evaluated, with sampling times at 0, 0.5, 1.0, and 2.0 min. Results revealed that five of six E. coli O157:H7 isolates and the E. coli control strain were highly susceptible to chlorine, with >7 log10 CFU/ml reduction of each of these strains by 0.25 ppm free chlorine within 1 min. However, comparatively, one of the seven strains was unusually tolerant to chlorine at 23 degrees C for 1 min, with a 4-, 5.5-, 5.8-, and >5.8-log CFU/ml reduction at free chlorine concentrations (ppm) of 0.25, 0.5, 1.0, and 2.0. respectively. Based on these studies most isolates of E. coli O157:H7 have no unusual tolerance to chlorine; however, one strain was exceptional in being recovered after 1-min of exposure of 10(7) CFU/ml to 2.0 ppm of free chlorine. This isolate may be a useful reference strain for future studies on chlorine tolerance of E. coli O157:H7.  相似文献   

8.
Thermal inactivation studies were used to determine the D- and z-values of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in ready-to-eat chicken-fried beef patties. Inoculated meat was packaged in sterile bags, which were immersed in a circulated water bath and held at 55, 57.5, 60, 62.5, 65, 67.5, and 70 degrees C for different lengths of time. D- and z-values were determined with a linear regression model. Average D-values at temperatures 55 to 70 degrees C were 27.62 to 0.04 min for E. coli 0157:H7, 67.68 to 0.22 min for Salmonella, and 81.37 to 0.31 min for L. monocytogenes. The z-values were 5.2 degrees C for E. coli O157:H7, 6.0 degrees C for Salmonella, and 6.1 degrees C for L. monocytogenes. The results of this study can be used by food processors to validate their processes and help eliminate pathogenic bacteria associated with chicken-fried beef products.  相似文献   

9.
The effects of lactic acid, acetic acid, and acidic calcium sulfate (ACS) on viability and subsequent acid tolerance of three strains of Escherichia coli O157:H7 were determined. Differences in tolerance to acidic environments were observed among strains, but the level of tolerance was not affected by the acidulant to which cells had been exposed. Cells of E. coli O157:H7 adapted to grow on tryptic soy agar acidified to pH 4.5 with ACS were compared to cells grown at pH 7.2 in the absence of ACS for their ability to survive after inoculation into ground beef treated with ACS, as well as untreated beef. The number of ACS-adapted cells recovered from ACS-treated beef was significantly (alpha = 0.05) higher than the number of control cells recovered from ACS-treated beef during the first 3 days of a 10-day storage period at 4 degrees C, suggesting that ACS-adapted cells might be initially more tolerant than unadapted cells to reduced pH in ACS-treated beef. Regardless of treatment of ground beef with ACS or adaptation of E. coli O157:H7 to ACS before inoculating ground beef, the pathogen survived in high numbers.  相似文献   

10.
Extensive research, intervention equipment, money, and media coverage have been directed at controlling Escherichia coli O157:H7 in beef cattle. However, much of the focus has been on controlling this pathogen postcolonization. This study was conducted to examine the performance, health, and shedding characteristics of beef calves that were vaccinated with an E. coli O157:H7 SRP bacterial extract. These calves had been born to cows vaccinated prepartum with the same vaccine. Cows and calves were assigned randomly to one of four treatments: (i) neither cows nor calves vaccinated with E. coli O157:H7 SRP (CON), (ii) cows vaccinated with E. coli O157:H7 SRP prepartum but calves not vaccinated (COWVAC), (iii) calves vaccinated with E. coli O157:H7 SRP but born to cows not vaccinated (CALFVAC), (iv) cows vaccinated with E. coli O157:H7 SRP prepartum and calves also vaccinated (BOTH). Calves born to vaccinated cows had significantly higher titers of anti-E. coli O157:H7 SRP antibodies (SRPAb) in circulation at branding time (P < 0.001). Upon entry to the feedlot, overall fecal E. coli O157:H7 prevalence was 23 % among calves, with 25 % in the CON treatment group, 19 % in the CALFVAC group, 32 % in the COWVAC group, and 15 % in the BOTH group (P > 0.05). Fecal shedding of E. coli O157 on arrival to the feedlot was not correlated with fecal shedding at slaughter (Spearman's rho = -0.02; P = 0.91). No significant effects of cow or calf E. coli O157:H7 SRP vaccination treatment were found on feedlot calf health or performance (P > 0.05), prevalence of lung lesions or liver abscess (P > 0.05), or morbidity, retreatment, or mortality numbers (P > 0.05). The findings of this study indicate that the timing of vaccination of calves against E. coli O157:H7 may be an important consideration for maximizing the field efficacy of this vaccine.  相似文献   

11.
Cattle are an asymptomatic reservoir of Escherichia coli O157:H7, but the bacterial colonization and shedding patterns are poorly understood. The prevalence and shedding of this human pathogen have been reported to be seasonal with rates typically increasing during warm months. The objectives of this study were (i) to assess the prevalence of E. coli O157:H7 in feces of feedlot cattle in Kansas during summer, fall, and winter months, and (ii) to characterize E. coli O157:H7 by screening for virulence factors. Of 891 fecal samples collected, 82 (9.2%) were positive for E. coli O157:H7. No significant differences in prevalence were detected among summer, fall, and winter months. The highest monthly prevalence (18.1%) was detected in February. All tested isolates were positive for stx2 (Shiga toxin 2) and eaeA (intimin) genes; 14 isolates (12.8%) also carried stx1. Our results indicate the prevalence of E. coli O157:H7 in beef cattle feces is not necessarily season dependent.  相似文献   

12.
A total of 114 beef and baby beef samples were examined. The samples included ground baby beef, mixed ground baby beef and pork, and chopped and shaped meat. The samples were analyzed from 30 different grocery stores in Zagreb, Croatia. The object of this study was to evaluate the prevalence of Escherichia coli O157:H7 in the samples that can enhance the potential risk of outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. The results in all tested samples of E. coli O157:H7 were negative. A single sample was positive in a latex agglutination test using antiserum to O157:H7. It was identified as Proteus vulgaris at the Pasteur Institute, Paris, France. This result correlates positively with cross-contamination with Yersinia enterocolitica 09, Brucella abortus, Salmonella type N, and Pseudomonas maltophila.  相似文献   

13.
The objective of this study was to determine if survivor curves for heat-inactivated Escherichia coli O157:H7 were affected by the physiological state of the cells relative to growth conditions and pH of the heating menstruum. A comparison was made between the log-linear model and non-log-linear Weibull approach. Cells were grown statically in aerobic culture tubes or in an aerobic chemostat in tryptic soy broth (pH 7.2). The heating menstruum was unbuffered peptone or phosphate buffer (pH 7.0). Thermal inactivation was carried out at 58, 59, 60, and 61°C, and recovery was on a nonselective medium. Longer inactivation times for statically grown cells indicated potential stress adaptation. This was more prevalent at 58°C. Shape response was also significantly different, with statically grown cells exhibiting decreasing thermal resistance over time and chemostat cells showing the opposite effect. Buffering the heating menstruum to ca. pH 7 resulted in inactivation curves that showed less variability or scatter of data points. Time to specific log reduction values (t(d)) for the Weibull model were conservative relative to the log-linear model depending upon the stage of reduction. The Weibull model offered the most accurate fit of the data in all cases, especially considering the log-linear model is equivalent to the Weibull model with a fixed shape factor of 1. The determination of z-value for the log-linear model showed a strong correlation between log D-value and process temperature. Correlations for the Weibull model parameters (log δ and log p) versus process temperature were not statistically significant.  相似文献   

14.
Raw beef producers currently face the problem of Escherichia coli O157:H7 surface contamination of beef carcasses that can lead to product adulteration. Although carcass interventions are in place, elimination of E. coli O157:H7 from every potential hiding place on the surfaces of a beef carcass is not technologically feasible. Therefore, E. coli O157:H7 on beef carcasses might further contaminate the surfaces of beef trimmings. With the use of case scenarios from nine commercial processing facilities, we present a process control and statistical sampling approach for monitoring beef trimmings to divert contaminated lots of the trimmings from the raw ground beef supply chain.  相似文献   

15.
Morcilla is a link sausage quite similar to black pudding, consisting of an inert casing stuffed with a mixture of beef blood, fat, and seasonings. Thirty samples of morcilla showed total microbial counts (6.3×103–2.1×108 Cfu/g ), molds and yeasts (8.9×101–6.3×104 Cfu/g), sulfite-reducing microorganism (2.0×101–2.1×102MPN/g); total coliforms (1.4×101–1.1×103 MPN/g); fecal coliforms (7.0–1.5×102MPN/g); Enterobactereaceae (1.6×102–5.0×105 Cfu/g). S. aureus and B. cereus were not detected. E. coli was detected in 76.6% of the samples analyzed. The thermal resistance (D and z-values) of Escherichia coli O157:H7 and E. coli isolated from morcilla were determined in nutrient broth and in a heating menstruun prepared with ground morcilla (discarding the casing) and added fat or starch. Higher fat and starch levels resulted in higher D-values (min) at 54, 58 and 62 °C for both strains. The z-values (°C) for isolated E. coli in nutrient broth (M1), ground morcilla (M2), M2+10% fat (M3), M2+20% fat (M4), M2+10% starch (M5), and M2+20% starch (M6) were 7.9, 7.8, 10.5, 10.4, 10.3, and 10.4, respectively, and for E. coli O157:H7 were 7.8, 7.4, 9.8, 10.2, 10.3, and 10.7. The composition of product affected heat lethality of the two strains of E. coli.  相似文献   

16.
This study was conducted to compare thermal inactivation of stress-adapted and nonadapted Escherichia coli O157:H7 in nonintact beef moisture enhanced with different brine formulations and cooked to 65°C. Coarsely ground beef was mixed with acid, cold, heat, starvation, or desiccation stress-adapted or nonadapted rifampin-resistant E. coli O157:H7 (eight-strain mixture, 5 to 6 log CFU/g) and a brine solution for a total moisture enhancement level of 10%. The brine treatments included distilled water (control), sodium chloride (0.5% NaCl) plus sodium tripolyphosphate (0.25% STP), or NaCl + STP combined with cetylpyridinium chloride (0.2% CPC), lactic acid (0.3% LA), or sodium metasilicate (0.2% SM). The treated meat was extruded into bags (15 cm diameter), semifrozen (-20°C for 4.5 h), and cut into 2.54-cm (1-in.)-thick portions. Samples were individually vacuum packaged, frozen (-20°C for 42 h), and tempered at 4°C for 2.5 h before cooking. Partially thawed (-1.8 ± 0.4°C) samples were pan broiled to an internal temperature of 65°C. Pathogen counts of partially thawed (before cooking) samples moisture enhanced with brines containing CPC, LA, or SM were 0.7 to 1.1, 0.0 to 0.4, and 0.2 to 0.4 log CFU/g, respectively, lower than those of the control. Compared with microbial count reductions obtained after pan broiling of beef inoculated with nonadapted E. coli O157:H7 cells, count reductions during cooking of meat inoculated with cold and desiccation stress-adapted, acid stress-adapted, and heat and starvation stress-adapted cells indicated sensitization, cross protection, and no effect, respectively, of these stresses on the pathogen during subsequent exposure to heat. Among all stressed cultures, CPC-treated samples (0.8 to 3.6 log CFU/g) and LA-treated samples (0.8 to 3.5 log CFU/g) had the lowest numbers of E. coli O157:H7 survivors after cooking.  相似文献   

17.
ABSTRACT:  Decimal reduction times ( D -values) and thermal resistance constants ( z -values) for 3 foodborne pathogenic bacteria in formulated ready-to-eat breaded pork patties were determined with thermal inactivation studies. Meat samples, inoculated with Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes cultures or uninoculated controls, were packaged in sterile bags, immersed in circulated water bath, and held at 55, 57.5, 60, 62.5, 65, 67.5, and 70 °C for different durations of time. The D - and z -values were determined by using a linear regression model. Average calculated D -values for E. coli O157:H7, Salmonella , and L . monocytogenes at a temperature range of 55 to 70 °C were 32.11 to 0.08 min, 69.48 to 0.29 min, and 150.46 to 0.43 min, respectively. Calculated z -values for E. coli O157:H7, Salmonella , and L. monocytogenes were 5.4, 6.2, and 5.9 °C, respectively. The results of this study will be useful to food processors to validate thermal lethality of the studied foodborne pathogens in ready-to-eat breaded pork patties.  相似文献   

18.
19.
Ground beef was irradiated to 0, 2, or 4 kGy and then inoculated with a mixed culture of four serotypes of salmonellae or five strains of Escherichia coli O157:H7. The ground beef was stored at either 15 or 25 degrees C, and the growth of the inoculated bacteria was monitored over time. Growth parameters were determined for both the salmonellae and the E. coli O157:H7 using the Gompertz equation. There was no significant difference in lag phase duration or generation time, irrespective of the dose to which the ground beef had previously been exposed. Furthermore, the lag phase durations and generation times determined in this study did not differ significantly from previously published values. This suggests that, although irradiation eliminates a significant portion of the spoilage microflora in ground beef, the absence of this microflora provides no competitive advantage to the growth of salmonellae or E. coli O157:H7 in ground beef.  相似文献   

20.
In this study, supercritical carbon dioxide (SC-CO(2)) was applied in the inactivation of pathogenic Escherichia coli (E. coli) O157:H7 and generic E. coli. For both strains suspended in physiological saline (PS), colony forming units per ml were reduced by 8 log orders within 15-30 min, in a treatment range of 80-150 bar and 35-45 degrees C. Any significant differences between the two E. coli strains during the inactivation by SC-CO(2) were not noticed. The microbial inactivation curve, which was established by the modified Gompertz model describing the survival rate with treatment time, was divided into three distinct stages. When using cells in PS, k(dm), lambda and t(8) (the time for an 8-log reduction of cell counts) were 0 to 3 min(-1), 8 to 16 min and 11 to 29 min, respectively. The temperature-dependency of the microbial inactivation was verified via the correlation of the logarithm of k(dm) versus the inverse of temperature. We have observed lower inactivation rates in phosphate-buffered saline (PBS) than in PS, the lowered pH, and an increase of UV-absorbing substances in the cell suspension after SC-CO(2) treatment. Also, the deformation and collapse of the SC-CO(2)-treated cells were revealed by scanning and transmission electron microscopy, and the deactivation of cellular enzymes occurred. These all suggest that the inactivation of E. coli O157:H7 and generic E. coli was possibly caused in a concerted manner by acidification, damage to cell membranes and subsequent leakage of cellular materials, and the inactivation of cellular enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号