首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grazed pastures contribute significantly to anthropogenic emissions of N2O but the respective contributions of archaea, bacteria and fungi to codenitrification in such systems is unresolved. This study examined the relative contributions of bacteria and fungi to rates of denitrification and codenitrification under a simulated ruminant urine event. It was hypothesised that fungi would be primarily responsible for both codenitrification and total N2O and N2 emissions. The effects of bacterial (streptomycin), fungal (cycloheximide), and combined inhibitor treatments were measured in a laboratory mesocosm experiment, on soil that had received 15N labelled urea. Soil inorganic-N concentrations, N2O and N2 gas fluxes were measured over 51 days. On Days 42 and 51, when nitrification was actively proceeding in the positive control, the inhibitor treatments inhibited nitrification as evidenced by increased soil NH 4 + -N concentrations and decreased soil NO 2 ? -N and NO 3 ? -N concentrations. Codenitrification was observed to contribute to total fluxes of both N2O (≥ 33%) and N2 (≥ 3%) in urine-amended grassland soils. Cycloheximide inhibition decreased NH 4 + 15N enrichment and reduced N2O fluxes while reducing the contribution of codenitrification to total N2O fluxes by ≥ 66 and ≥ 42%, respectively. Thus, given archaea do not respond to significant urea deposition, it is proposed that fungi, not bacteria, dominated total N2O fluxes, and the codenitrification N2O fluxes, from a simulated urine amended pasture soil.  相似文献   

2.
Slurry separation using mechanical and chemical methods is one of the options considered to solve problems of slurry management at the farm scale. The fractions obtained with such treatments have distinct compositions, which allow different options for their utilization (composting, direct application, and fertigation). In this study, four fractions of slurry were obtained using a combined treatment system including slurry treatment with a screw press separator (solid and liquid fractions) followed by sedimentation with the addition of Polyacrylamide (PAM) (PAM-Supernatant and PAM-Sediment) to the LF. These fractions were then incorporated into arable soil under controlled laboratory conditions and the organic N degradation from each treatment was followed for 94 days. Total N emissions (N2O + N2) as well as the sources of the N emissions (nitrification or denitrification) were also studied during this period. Results showed that the slurry fractions (SFs) had distinct behavior relative to the whole slurry (WS), namely in terms of N degradation in soil, where N mineralization was observed only in the WS treatment whereas N immobilization occurred in the other treatments. In terms of N2O emissions, higher losses, expressed as a percentage of the total N added, occurred from the LF treatments (liquid, PAM-Supernatant and PAM-Sediment). This work indicates that the slurry treatment by mechanical and chemical separation may be a good option for slurry management at the farm scale since it allows greater utilization of the different fractions with a small effect on N2O emissions after SFs’ application to soil.  相似文献   

3.
Nitrous oxide (N2O) is primarily produced as intermediate in denitrification and, to a lesser extent, through nitrification processes. Nitrous oxide emission and, consequently, its atmospheric impacts depend on the extent to which N2O is reduced to dinitrogen gas (N2) by denitrifiers. Field experiments were conducted from 1998 through 2000 growing seasons at St. Emmanuel, Quebec, Canada, to investigate the combined impact of water table management (WTM) and N fertilization rate on the soil denitrification (N2O + N2) rate, rate of N2O production, and the N2O:N2O + N2 ratio. Water table treatments included subirrigation (SI) with a target water table depth of 0.6 m and free drainage (FD) with open drains. The tile drains (75 mm diameter) were laid at a 1.0 m depth from the soil surface. Nitrogen fertilizer was applied at two rates:120 and 200 kg N ha−1 as ammonium nitrate (34-0-0). The N2O + N2 evolution rates were greater in SI (12.9 kg N ha−1) than in FD (5.8 kg N ha−1) plots. The percentages of N2O relative to overall N2O + N2 evolution were 35 and 11% for 1998, 29 and 8% for 1999, and 37 and 20% for 2000, under FD and SI, respectively. The reduced N2O production under SI was due to a greater reduction of N2O to N2. Results indicate that greater N2O + N2 evolution under shallow water tables are not necessarily accompanied by higher N2O emissions.  相似文献   

4.
Nitrous oxide (N2O) is an important greenhouse gas that is emitted from soil, but obtaining precise N2O source and sink strength estimates has been difficult due to high spatial and temporal flux variability and a poor understanding of the mechanisms controlling fluxes. Tools that improve our ability to quantify trace gas fluxes from soil and constrain annual budgets are therefore needed. Here we describe an improved chamber-based sampling system that continuously traps evolving soil gases onto molecular sieve thereby obtaining a single sample that integrates fluxes over extended periods (several weeks or more) and the use of stable isotopic methods to study microbial origins of N2O. We demonstrate that N2O can be trapped on molecular sieve within our chamber system with near 100% recovery and without isotopic fractionation. In field trials the site preference of N2O (the difference in δ15N between the central and outer N atoms) varied between −6 and 14.4‰, indicating that the majority of flux was derived from bacterial denitrification. Further development with automation would improve flux estimates by providing a system capable of capturing episodic flux events owing to long-term deployment. Further, an automated trapping chamber approach will also provide process-based understanding of N2O dynamics via stable isotopes and a new and affordable tool for evaluating the response of trace gas fluxes to land management practices.  相似文献   

5.
Midseason aeration (MSA) of rice paddy fields functions to mitigate CH4 emission by a large margin, while simultaneously promoting N2O emission. Alternation of timing and duration of MSA would affect CH4 and N2O emissions from intermittently irrigated rice paddies. A pot trial and a field experiment were conducted to study the effect of timing and duration of MSA on CH4 and N2O emissions from irrigated lowland rice paddy soils in China. Four different water regimes, i.e., early aeration, normal aeration (the same as the local practice in timing and duration of aeration), delayed aeration, and prolonged aeration, were adopted separately and compared with respect to global warming potential (GWP) of CH4 and N2O emissions and rice yields as well. Total emission of CH4 from the rice fields ranged from 28.6 to 64.1 kg CH4 ha−1, while that of N2O did from 1.71 to 6.30 kg N2O–N ha−1 during the study periods. Compared with the local practice, early aeration reduced CH4 emission by 13.3–16.2% and increased N2O emission by 19.1–68.8%, while delayed aeration reduced N2O emission by 6.8–26.0% and increased CH4 emission by 22.1–47.3%. The lowest GWP of CH4 and N2O emissions occurred in prolonged aeration treatment, however, rice grain yield was reduced by 15.3% in this condition when compared with normal practice. It was found in the experiments that midseason aeration starting around D 30 after rice transplanting, just like the local practice, would optimize rice yields while simultaneously limiting GWPs of CH4 and N2O emissions from irrigated lowland rice fields in China.  相似文献   

6.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

7.
The objective of this study was to evaluate N2O fluxes from integrated crop-livestock (ICL) and integrated crop-livestock forest (ICLF) systems, continuous pasture and native Cerrado. The experiment was conducted at Embrapa Cerrados, Planaltina-DF, in a Red Oxisol, between February 2012 and April 2014, following the transition of crop to livestock, which began in March 2012, with the sowing of Brachiaria brizantha cv. Piatã, intercropped with sorghum. The experimental design was a randomized block with three replications. The treatments were: cultivated area intercropped with rows of Eucalyptus, spaced 2 × 2 m between plants and 22 m between rows (ICLF); and an area cultivated without tree species (ICL), and also two adjacent reference areas: native Cerrado and continuous pasture. N2O productions were characterized by fluxes below 20 μg N m?2 h?1. The ICL system had the highest cumulative flux with 2.84 kg N ha?1, while the ICLF system obtained cumulative fluxes of 2.05 kg N ha?1. The native Cerrado showed a negative balance, with –0.05 kg N ha?1. The dry season was mostly characterized by low N2O fluxes ranging between 10 μg N m?2 h?1 and negative values, whereas higher N2O fluxes were observed after precipitation events, especially those following a long drought period. The water filled pore space was the factor that best explained N2O fluxes, but higher fluxes were observed after the application of nitrogen fertilizer. There was a positive correlation between microbial biomass carbon and N2O fluxes in the ICL and ICLF systems.  相似文献   

8.
Nitrogen (N) management is critical to the profitability of grain production systems, however careful management of fertiliser is needed to minimise environmental impacts. We investigated the effect of five N fertilisation strategies on nitrous oxide (N2O) emissions and nitrogen use efficiency (NUE) of rainfed wheat grown on a clay soil in a temperate, semi-arid environment of south eastern Australia during 2013 and 2014. Treatments included urea application (50 kg N/ha) at sowing with and without nitrification inhibitor (3,4–dimethylpyrazole phosphate) and surface broadcasting of urea with and without urease inhibitor (n-butyl thiophosphoric triamide) at the end of tillering plus an unfertilised control. Daily N2O emissions were low and responsive to in-season rainfall and fertiliser addition at sowing. Cumulative emissions from sowing until harvest were highest where N was applied at sowing in 2013; 160 g N2O-N/ha, while the 0 N control emitted 28 g N2O-N/ha (over 201 days). Emissions during 2014 were 77% lower than 2013 due to dry seasonal conditions; cumulative emissions were 49 g N2O-N/ha where N was applied at sowing, with background emissions of around 0 g N2O-N/ha (over 177 days). Inhibitors showed limited scope for reducing N2O emissions in this environment, however deferring N application until the end of tillering reduced N2O emissions. Grain yield responses to fertiliser were significant; increasing grain yield by 11–31% and NUE was generally high (recovery efficiency?>?68%). However, deferring N application until the end of tillering in 2014 reduced yield (??19%) and recovery of applied N (??74%).  相似文献   

9.
The adsorption characteristics of CO2 and N2 in 13X zeolites have been studied by the molecular simulation and N2 adsorption experiment. It is found that the simulation results by Dreiding force fields are in an agreement with the published data. The influence of the σ and ε parameters of OZ and Na+ on the adsorption performance is discussed. Then the optimized force field parameters are obtained. Specific surface area (S B ) is calculated by simulation and experiment. Its relative error is just only 4.3 %. Therefore, it is feasible that S B of 13X zeolites is obtained by the simulation methods. Finally, the impacts of pressure and temperature on adsorption characteristics are investigated. At low pressure, CO2 adsorption in 13X zeolites belongs to the surface adsorption. As the pressure increase, the partial multilayer adsorption appears along with the surface adsorption. N2 adsorption in 13X zeolites is different from that of CO2. At low temperature of 77 K, two primary peaks are caused by the surface adsorption and multilayer adsorption respectively regardless of pressure variation. When the temperature is 273 K, the energy distribution curve appears undulate at low pressures. Then it becomes stable with the pressure increase. The surface adsorption plays an important role at the relative high pressures. The results will help to provide the theory guide for the optimization of force field parameters of adsorbents, and it is very important significance to understand the adsorption performance of zeolites.  相似文献   

10.
Agriculture contributes considerably to the emission of greenhouse gases, such as N2O and CH4. Here we summarize results from previous pot experiments assessing the effectiveness of urease and nitrification inhibitors reducing both N2O and CH4 emissions from wheat and rice cropping systems fertilized with urea (U). For the wheat cropping system, using a cambisol, we observed that the application of U with hydroquinone (HQ, a urease inhibitor), U with dicyandiamide (DCD, a nitrification inhibitor) and U with HQ plus DCD decreased the N2O emissions by 11.4, 22.3 and 25.1%, respectively. For the rice copping system, using a luvisol, we found that the application of U with HQ, U with DCD and U with HQ plus DCD decreased N2O emissions by 10.6, 47.0 and 62.3%, respectively, and CH4 emissions by 30.1, 53.1 and 58.3%, respectively. In terms of total global warming potential (GWP) a reduction of 61.2% could be realized via the combined addition of HQ and DCD. The addition of wheat straw reduced the activity of HQ and DCD in the rice cropping experiments. In terms of total GWP only a reduction of 30.7% could be achieved. In general, both in upland and flooded conditions, the application of HQ and DCD alone was less effective than HQ in combination with DCD, but not significantly for U plus DCD treatment. Our observations may be further constrained, however, by practical, economic or social problems and should therefore be tested at the scale of a region (e.g. a watershed) and related to an integrated abatement of agricultural N losses.  相似文献   

11.
12.
This paper presents the measurement and simulation data on the thermal and chemical structure of an atmospheric-pressure premixed H2/O2/N2 flame doped with iron pentacarbonyl Fe(CO)5. Soft ionization molecular beam mass spectrometry was used to measure concentration profiles of the combustion products of iron pentacarbonyl: Fe, FeO2, FeOH, and Fe(OH)2. A comparison of experimental and simulated concentration profiles showed that they are in satisfactory agreement for FeO2 and Fe(OH)2 and differ significantly for Fe and FeOH. Thus, the previously proposed kinetic model for the oxidation of iron pentacarbonyl was tested and it was shown that the mechanism needs further elaboration.  相似文献   

13.
N2O emissions from a fertilized humid grassland near Cork, Ireland were continuously measured during 2003 using an eddy covariance system. For most of the year emissions were close to zero and 60% of the emissions occurred in eight major events of 2–20 days’ duration. Two hundred and seven kg ha−1 of synthetic N and 130 kg ha−1 organic N were applied over the year and the total measured annual N2O emission was 11.6 kg N ha−1. The flux data were used to test the prediction of N2O emissions by the DNDC (DeNitrification – DeComposition) model. The model predicted total emissions of 15.4 kg N ha−1, 32 % more than the observed emissions. On this basis the model was further used to simulate (a) background (non-anthropogenic) N2O emissions and (b) the effect on N2O emissions of future climate perturbations based on the Hadley Center model output of the IS92a scenario for Ireland. DNDC predicts 1.7 kg N ha−1 year−1 of background N2O emissions, accounting for 15% of the observed emissions. Climate shifts will increase total annual modeled N2O emissions from 15.4 kg N ha−1 to 22.4 kg N ha−1 if current levels of N applications are maintained, or to 21.2 kg N ha−1 if synthetic N applications are reduced to 170 kg N ha−1 to comply with recent EU water quality legislation. Thus the projected increase in N2O emissions due to climate change is far larger than the decrease expected from reduced fertilizer applications.  相似文献   

14.
Understanding the fate of N2O in the subsoil is important in accurately assessing the direct and indirect fluxes of N2O to the environment. The production, movement and ultimate fate of N2O in the subsoil are all poorly understood. Movement of N2O in the subsoil occurs predominantly via diffusion but convective fluxes can also occur. Diffusion gradients in the soil have been used to determine N2O surface fluxes with varying success. Infiltration of water into the soil may lead to entrapment, and the temporary storage of N2O, ebullition, or the transport of dissolved N2O in soil leachates. The reduction of N2O to N2 is potentially enhanced when N2O is entrapped. Few studies have examined the effect of infiltrating water on a previously known N2O concentration in the soil. Future studies are required to better establish the consumption and movement of N2O in the subsoil during water infiltration. This paper reviews past work on the movement and fate of N2O in the subsoil and makes suggestions for future studies.  相似文献   

15.
To better understand the effects of increased N input and dry periods on soil nitrous oxide (N2O) emission, we examined a unique data-set of weather, soil microclimate, N input, and N2O emissions (using the eddy covariance method), measured at a fertilized grassland over the period 2003–2008. We found that the N2O emission (11.5 kg N ha−1 year−1), the ratio of N2O emission to N input (3.4), and the duration of elevated N2O flux (57 days) in 2003 were about two times greater than those of the following years. 2003 had the highest annual N input (343 kg N ha−1 year−1) which exceeded the agronomical requirements for Irish grasslands (up to 306 kg ha−1 year−1). In the summer of 2003, the site had a significantly higher soil temperature, lower WFPS and lowest rainfall of all years. Large N2O emission events followed rainfall after a long dry period in the summer of 2003, attributed to dominant nitrification processes. Furthermore, in the non summer periods, when temperature was lower and WFPS was higher and when there were prior N applications, lower N2O emissions occurred and were attributed to dominant denitrification processes. Throughout the study period, the N input and soil dryness related factors (duration of WFPS under 50%, summer average WFPS, and low rainfall) showed exponential relationships with N2O emission and the ratio of N2O emission to N input. Based on these findings, we infer that the observed anomalously high N2O emission in 2003 may have been caused by the combined effects of excess N input above the plant uptake rate, elevated soil temperature, and N2O flux bursts that followed the rewetting of dry soil after an unusually long dry summer period. These results suggest that high N input above plant uptake rate and extended dry periods may cause abnormal increases in N2O emissions.  相似文献   

16.
Controlled tile drainage (CTD) can benefit the environment and crop production. However, CTD has the potential to increase soil greenhouse gas (GHG: CO2, CH4, N2O) emissions by increasing soil water contents and elevating field water levels. A paired-field (CTD and uncontrolled tile drainage (UTD)) approach was used to compare soil GHG emissions for silt loam corn, soybean, and forage fields under CTD and UTD management in eastern Ontario, Canada during a drier and a wetter growing season. A total of five field pairs were examined. Soil GHG emissions directly over tile drains (OT) and between tile drains (BT) in the CTD fields were also assessed. Average soil GHG emissions did not significantly differ (p > 0.05) for CTD and UTD field pairs, except for CO2 emissions (greater emissions from UTD fields) among two field pairs studied (forage in the drier growing season and soybean in the wetter growing season), and N2O emissions from a soybean field pair in the wet growing season (greater emissions from CTD field). Significantly higher soil water contents in the UTD forage field may have augmented CO2 fluxes there. There were some significantly higher N2O (in the wetter growing season) and CO2 emissions (in both growing seasons) BT relative to OT locations in some fields; but these differences were not translated significantly to other BT and OT site comparisons. The wetter growing season examined resulted in greater average daily soil CO2 fluxes overall, but similar CH4 and N2O fluxes for soybean fields compared to soybean fields in the drier growing season. Overall, there were no spatially or temporally systematic differences in GHG emissions among CTD and UTD field pairs, or among BT and OT locations in CTD fields.  相似文献   

17.
Agricultural soils emit nitrous oxide (N2O), a potent greenhouse gas. Predicting and mitigating N2O emissions is not easy. To derive national coefficients for N2O emissions from soil, we collated over 400 treatment evaluations (measurements) of N2O fluxes from farming systems in various ecoregions across Canada. A simple linear coefficient for fertilizer-induced emission of N2O in non-manured soils (1.18% of N applied) was comparable to that used by the Intergovernmental Panel on Climate Change (IPCC) (1.25% of N applied). Emissions were correlated to soil and crop management practices (manure addition, N fertilizer addition and inclusion of legumes in the rotation) as well as to annual precipitation. The effect of tillage on emissions was inconsistent, varying among experiments and even within experiments from year to year. In humid regions (e.g., Eastern Canada) no-tillage tended to enhance N2O emissions; in arid regions (e.g., Western Prairies) no-tillage sometimes reduced emissions. The variability of N2O fluxes shows that we cannot yet always distinguish between potential mitigation practices with small (e.g., <10%) differences in emission. Our analysis also emphasizes the need for developing consistent experimental approaches (e.g., ‘control’ treatments) and methodologies (i.e. measurement period lengths) for estimating N2O emissions.  相似文献   

18.
The glasses, in which oxygen was partially replaced with sulfur, have been synthesized in the Na2O-P2O5-Na2S system. The chemical and chromatographic analyses of the glasses synthesized have been performed. The temperature-concentration dependences of electrical conductivity of the glasses have been studied over a wide temperature range; the glass transition temperatures and the nature of charge carriers have been determined. The IR spectra and Raman spectra have been recorded at room temperature; the density and microhardness of the glasses and ultrasound velocity have been measured. A comparison of the electrical conductivities of the investigated glasses with those of the earlier studied glasses in the Na2O-P2O5 system has shown their fair coincidence. The introduction of sodium sulfide into the Na2O-P2O5 system is accompanied by an approximately threefold increase in electrical conductivity, although the concentrations of charge carriers (sodium ions) in the glasses amount to ∼17 and ∼26 mmol/cm3, respectively. The rise in electrical conductivity has been assumed to be caused by the increase in the degree of dissociation of polar structural chemical units including sulfide ions and by the higher mobility of sodium ions in the oxygen-free matrix.  相似文献   

19.
An on-line, continuous IR-based N2O measurement system has been developed by combining with a variable multipath “White cell” to avoid a huge amount of the well-known artifact errors in actual N2O concentrations determination when analyzing grab samples taken from stationary sources, such as fossil fuel-fired power plants. For solving the problems confronted in earlier stages of this study, the gas cell had to have modifications of the feed through of gas sample flows, the multilayer coatings of stainless steel mirrors, and the thermal efficiency to provide high cell inner temperatures in flowing gas samples. These modifications allow good tolerance of the gas cell to gases and chemicals, such as NO x and NH3, and NH4NO3 driven from them, and its usage for a long lifetime even under harsh conditions. They also offer excellent performance not only in directly determining the extent of N2O formation during the course of NH3-SCR reaction over a sample of a commercial V2O5-WO3/TiO2 catalyst, but also in simultaneously monitoring changes in concentrations of NO, NO2 and NH3 during the reaction. Each reference peak was chosen in gasphase spectra for N2O, NO x , NH3 and H2O, and CO2 as a possible interference, and the modified gas cell was finely tuned to obtain their spectra with a high resolution under optimal operating conditions. The catalyst gave significant amounts of N2O formation at reaction temperatures greater than 350 °C, and attention should be paid to the possibility of N2O production from commercial NH3-SCR deNO x processes with V2O5/TiO2-based catalysts.  相似文献   

20.
The effect of acid treatment on the physical and chemical characteristics of BEA zeolite, as well as the catalytic activity of the Fe-BEA catalyst for N2O reduction under NH3-selective catalytic reduction (NH3-SCR) conditions, was examined. The acid treatment caused dealumination of BEA and enrichment of the silanol groups on vacant T-sites and the Brønsted acid sites. As the acid treatment time increased, the silanol groups and the weak acid sites in BEA also increased. Because the weak acid sites behave as anchoring sites for Fe ions, the catalytic activity also increased as the treatment time increased. However, extended exposure of BEA to acid decreased the catalytic activity of the Fe-BEA catalyst somewhat, and decreased the silanol groups and weak acid sites. The catalytic activity and the amount of weak acid sites were well correlated with the BEA acid treatment time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号