首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT:  We developed wine formulations containing plant essential oils and oil compounds effective against foodborne pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica. HPLC was used to determine maximum solubility of antimicrobials in wines as well as amounts of antimicrobials extracted by wines from commercial oregano and thyme leaves. Activity of essential oils (cinnamon, lemongrass, oregano, and thyme) and oil compounds (carvacrol, cinnamaldehyde, citral, and thymol) in wines were evaluated in terms of the percentage of the sample that resulted in a 50% decrease in the number of bacteria (BA50). The ranges of activities in wines (30 min BA50 values) against S. enterica/E. coli were carvacrol, 0.0059 to 0.010/0.011 to 0.021; oregano oils, 0.0079 to 0.014/0.022 to 0.031; cinnamaldehyde, 0.030 to 0.051/0.098 to 0.13; citral, 0.033 to 0.038/0.060 to 0.070; lemongrass oil, 0.053 to 0.066/0.059 to 0.071; cinnamon oil 0.038 to 0.057/0.066 to 0.098; thymol, 0.0086 to 0.010/0.016 to 0.022; and thyme oil, 0.0097 to 0.011/0.033 to 0.039. Detailed studies with carvacrol, the main component of oregano oil, showed that antibacterial activity was greater against S. enterica than against E. coli and that wine formulations exhibited high activities at low concentrations of added antimicrobials. The results suggest that wines containing essential oils/oil compounds, added or extracted from oregano or thyme leaves, could be used to reduce pathogens in food and other environments.  相似文献   

2.
The fate of three pathogens Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli O157:H7 that were inoculated in fish roe salad and aubergine salad with or without preservatives after being adapted in acid environment or not, was determined. The salads were stored at 10  ° C and the pathogens population was counted at regular intervals. Parameters (lag time, death rates calculated with Baranyi equation) were used to compare the behaviour of the pathogens. In the absence of preservatives the pathogens survived during the 15 days of storage. A 1 log reduction was observed for Listeria and 2 logs reduction for Salmonella and E. coli in both salads. In most cases, acid adaptation decreased the death rate even in the presence of preservatives. The addition of sorbic and benzoic acid in the salads increased the death rate of the pathogens during storage significantly and they were not detected at 7–10 days for Salmonella , 8–12 days for Listeria and 5 days for E. coli . It is concluded that a well-studied combination of hurdles is appropriate to ensure safety of home-made traditional salads free of preservatives.  相似文献   

3.
ABSTRACT: ε–polylysine is a homopolymer of L-lysine, an essential amino acid, with a reportedly wide antimicrobial spectrum. This study evaluated the antimicrobial activity of ε–polylysine, as compared with known preservatives and organic acids, against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes , in culture broth. The compounds tested included ε–polylysine (0.0025% to 0.05%), sodium diacetate (0.25%), sodium lactate (3.0%), lactic acid (0.1%), and acetic acid (0.1%), alone, as well as in combination with ε– polylysine (0.0025% to 0.03%); all treatments were evaluated in tryptic soy broth supplemented with 0.6% yeast extract. Treatments were inoculated (approximately 2 log colony-forming units [CFU]/mL) with 5-strain ( E. coli O157:H7, S. Typhimurium) or 10-strain ( L. monocytogenes ) mixtures of the pathogens. Survival/growth of the inoculated bacteria was periodically monitored during incubation at 4 °C (30 d) and 24 °C (48 h). Bactericidal effects of ε–polylysine were obtained against E. coli O157:H7 and S. Typhimurium at 4 °C. At the same temperature (4 °C), ε–polylysine alone or in combination with other compounds tested inhibited growth or was bactericidal against L. monocytogenes. All 3 pathogens were inhibited by ε–polylysine at 24 °C; however, L. monocytogenes was the most sensitive and S. Typhimurium the most resistant. The antimicrobial activity of ε–polylysine against E. coli O157:H7 and S. Typhimurium was enhanced ( P < 0.05) when tested in combination with sodium diacetate or acetic acid. Combination treatments with sodium lactate resulted in loss of ε–polylysine activity by the end of the incubation period. Overall, under the conditions of this study, ε–polylysine exhibited antimicrobial effects against the 3 pathogens tested.  相似文献   

4.
ABSTRACT: The country-cured ham process, including curing, equalization, cold-smoked or nonsmoked, and aging up to 6 mo, was validated and showed its effectiveness in achieving a 6-log reduction of Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7. The viable counts of L. monocytogenes populations decreased to below detection levels after 206 d, Salmonella populations required 122 d, and E. coli O157:H7 required 66 d. However, L. monocytogenes -inoculated hams were positive and Salmonella spp-inoculated and E. coli O157:H7-inoculated hams were negative following enrichment procedures at the end of the aging process. Therefore, the survival of L. monocytogenes on country-cured ham represents a risk.  相似文献   

5.
ABSTRACT:  Antibacterial activity of electrolyzed oxidizing (EO) water prepared from 0.05% or 0.10% (w/v) sodium chloride (NaCl) solutions against indigenous bacteria associated with fresh strawberries ( Fragaria × ananassa ) was evaluated. The efficacy of EO water and sodium hypochlorite (NaOCl) solution in eliminating and controlling the growth of Listeria monocytogenes and Escherichia coli O157:H7 inoculated onto strawberries stored at 4 ± 1 °C up to 15 d was investigated at exposure time of 1, 5, or 10 min. Posttreatment neutralization of fruit surfaces was also determined. More than 2 log10 CFU/g reductions of aerobic mesophiles were obtained in fruits washed for 10 or 15 min in EO water prepared from 0.10% (w/v) NaCl solution. Bactericidal activity of the disinfectants against L. monocytogenes and E. coli O157:H7 was not affected by posttreatment neutralization, and increasing exposure time did not significantly increase the antibacterial efficacy against both pathogens. While washing fruit surfaces with distilled water resulted in 1.90 and 1.27 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and E. coli O157:H7, respectively, ≥ 2.60 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and up to 2.35 and 3.12 log10 CFU/mL of rinse fluid reduction of E. coli O157:H7 were observed on fruit surfaces washed with EO water and NaOCl solution, respectively. Listeria monocytogenes and E. coli O157:H7 populations decreased over storage regardless of prior treatment. However, EO water and aqueous NaOCl did not show higher antimicrobial potential than water treatment during refrigeration storage.  相似文献   

6.
ABSTRACT:  Decimal reduction times ( D -values) and thermal resistance constants ( z -values) for 3 foodborne pathogenic bacteria in formulated ready-to-eat breaded pork patties were determined with thermal inactivation studies. Meat samples, inoculated with Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes cultures or uninoculated controls, were packaged in sterile bags, immersed in circulated water bath, and held at 55, 57.5, 60, 62.5, 65, 67.5, and 70 °C for different durations of time. The D - and z -values were determined by using a linear regression model. Average calculated D -values for E. coli O157:H7, Salmonella , and L . monocytogenes at a temperature range of 55 to 70 °C were 32.11 to 0.08 min, 69.48 to 0.29 min, and 150.46 to 0.43 min, respectively. Calculated z -values for E. coli O157:H7, Salmonella , and L. monocytogenes were 5.4, 6.2, and 5.9 °C, respectively. The results of this study will be useful to food processors to validate thermal lethality of the studied foodborne pathogens in ready-to-eat breaded pork patties.  相似文献   

7.
Abstract: This study was undertaken to investigate the antimicrobial effect of organic acids against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on whole red organic apples and lettuce. Several studies have been conducted to evaluate organic acids as sanitizers. However, no studies have compared antimicrobial effects of various organic acids on organic fresh produce, including evaluation of color changes of produce. Apples and lettuce were inoculated with a cocktail of 3 strains each of 3 foodborne pathogens provided above and treated with 1% and 2% organic acids (propionic, acetic, lactic, malic, and citric acid) for 0, 0.5, 1, 5, and 10 min. With increasing treatment time and acid concentration, organic acid treatments showed significant reduction compared to the control treatment (distilled water), and differences in antimicrobial effects between organic acids were observed. After 10 min of treatment with 1% and 2% organic acids in apples, propionic (0.92 to 2.75 log reduction), acetic (0.52 to 2.78 log reduction), lactic (1.69 to >3.42 log reduction), malic (1.48 to >3.42 log reduction), and citric acid (1.52 to >3.42 log reduction) exhibited significant (P < 0.05) antibacterial effects against 3 foodborne pathogens compared to the control treatment. In lettuce, propionic (0.93 to 1.52 log reduction), acetic (1.13 to 1.74 log reduction), lactic (1.87 to 2.54 log reduction), malic (2.32 to 2.98 log reduction), and citric acid (1.85 to 2.86 log reduction) showed significant (P < 0.05) effects compared to the control treatment. Changes in sample color subjected to organic acids treatment were not significant during storage. Practical Application: It is suggested that organic acids have a potential as sanitizers for organic fresh produce. These data may help the organic produce industry provide safe fresh produce for consumers.  相似文献   

8.
9.
ABSTRACT: This study was conducted to determine the effects of ozonated water (1, 3, and 5 ppm) alone with different exposure times (0.5,1,3, or5min), and combinations of 3 ppm ozone with 1% organic acids (acetic, citric, or lactic acids) during 1-min exposure for inactivating Escherichia coli O157:H7 and Listeria monocytogenes on lettuce and to observe the regrowth of these pathogenic bacteria on treated lettuce during storage for 10 d at 15°C. Results showed that 5 ppm ozone treatment for 5 min gave 1.09-log and 0.94-log reductions of E. coli O157:H7 and L. monocytogenes , respectively, indicating insignificant reductions compared with 3 ppm ozone treatment for 5 min. Treatment with 3 ppm ozone combined with 1 % citric acid for 1 min immersing resulted in 2.31 - and 1.84-log reductions ( P < 0.05), respectively. During storage at 15°C for 10 d after combined treatment and packaging, populations of E. coli O157:H7 and L. monocytogenes increased to approximately 9.0-log colony forming unit (CFU) /g, indicating that this treatment did not have a residual antimicrobial effect during storage. Although the storage study did not show control of these pathogens, the combined ozone-organic acid treatment was more effective in reducing population levels of these pathogens on lettuce than individual treatments.  相似文献   

10.
ABSTRACT: Thermal inactivation of Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes in ground pork was compared. The D (decimal reduction time at a certain heating temperature) values of E. coli O157:H7, Salmonella , and L. monocytogenes at 55 to 70°C were 33.44 to 0.048 min, 45.87 to 0.083 min, and 47.17 to 0.085 min, respectively. The z (temperature rise for 1 log10 reduction of D) value of E. coli O157:H7, Salmonella , and L. monocytogenes in ground pork was 4.94°C, 5.89°C, and 5.92°C, respectively. Significant difference was found on the D and z values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes . The D and z values of Salmonella in ground pork were not significantly different from L. monocytogenes .  相似文献   

11.
The effectiveness of low gamma-irradiation doses in the destruction of Escherichia coli O 157 : H7 and Listeria monocytogenes in raw beef sausages was investigated. Raw samples of fresh manufactured beef sausage were subjected to gamma-irradiation at doses of 0, 1, 2, and 3 kGy. Then samples were cold-stored (4 +/- 1 degrees C) for 12 days and the effects of irradiation and storage on the counts of these harmful bacteria were studied. Moreover, the effects of irradiation and storage on the percentages of free fatty acids (FFAs) in lipids, on the p-anisidine values of lipids, solubility of sarcoplasmic and myofibrilar proteins, and water-holding capacity (WHC) were also determined. The results showed that gamma-irradiation at 1 and 2 kGy significantly reduced the counts of E. coli O 157 : H7 and L. monocytogenes, while 3 kGy dose effectively eliminated these bacteria by more than 4 log and 3 log units, respectively, and could keep their counts below the detection level during storage. Gamma-irradiation had no significant effects on the percentages of FFAs in lipids, solubility of sarcoplasmic and myofibrilar proteins, and WHC of samples, while it significantly increased the p-anisidine value of lipids. During storage, significant increases in the percentages of FFAs and p-anisidine values were observed for lipids of irradiated and nonirradiated sausages, while the solubility of sarcoplasmic and myofibrilar proteins showed no significant changes. Moreover, samples of irradiated and nonirradiated sausages showed significant decreases in their WHC during the first 6 days of storage at 4 +/- 1 degrees C, then showed no significant changes. Finally, gamma-irradiation at a dose of 3 kGy appeared to be sufficient to improve the microbiological safety of raw beef sausages without adverse effects on their chemical properties.  相似文献   

12.
The efficacy of pulsed UV‐light to inactivate of Escherichia coli O157:H7 and Listeria monocytogenes Scott A on salmon fillets was investigated in this study by evaluating the effects of treatment times and distance from the UV strobe. The sterilization system generated 5.6 J cm?2 per pulse at the lamp surface for an input voltage of 3800 V and three pulses per second. Skin or muscle side inoculated salmon fillet (8 cm × 1.5 cm) in a Petri dish was placed on shelf at three different distances from the UV strobe; 3, 5, and 8 cm. At each distance, the pulsed UV‐light treatment was performed for 15, 30, 45, and 60 s. For E. coli O157:H7, maximum log10 reduction was 1.09 log10 CFU g?1 on muscle side at 8 cm for 60‐s treatment, whereas 0.86 log10 CFU g?1 reduction on skin at 5 cm for 30‐s treatment. For L. monocytogenes Scott A, maximum reduction was 1.02 log10 CFU g?1 at 8 cm for 60‐s treatment on skin side, whereas 0.74 log10 CFU g?1 reduction on muscle at 8 cm for 60‐s treatment. The fillet's surface temperature increased up to 100degrC within 60‐s treatment time. Therefore, some fish samples were overheated after 30 and 45 s at 3‐ and 5‐cm distances from light source, respectively, which resulted in visual colour and quality changes. Overall, this study demonstrated that about one log reduction (c. 90%) of E. coli O157:H7 or L. monocytogenes could be achieved at 60‐s treatment at 8 cm distance without affecting the quality.  相似文献   

13.
The significance of fresh vegetable consumption on human nutrition and health is well recognized. Human infections with Escherichia coli O157:H7 and Salmonella enterica linked to fresh vegetable consumption have become a serious public health problem inflicting a heavy economic burden. The use of contaminated livestock wastes such as manure and manure slurry in crop production is believed to be one of the principal routes of fresh vegetable contamination with E. coli O157:H7 and S. enterica at preharvest stage because both ruminant and nonruminant livestock are known carriers of E. coli O157:H7 and S. enterica in the environment. A number of challenge‐testing studies have examined the fate of E. coli O157:H7 and S. enterica in the agricultural environment with the view of designing strategies for controlling vegetable contamination preharvest. In this review, we examined the mathematical modeling approaches that have been used to study the behavior of E. coli O157:H7 and S. enterica in the manure, manure‐amended soil, and in manure‐amended soil–plant ecosystem during cultivation of fresh vegetable crops. We focused on how the models have been applied to fit survivor curves, predict survival, and assess the risk of vegetable contamination preharvest. The inadequacies of the current modeling approaches are discussed and suggestions for improvements to enhance the applicability of the models as decision tools to control E. coli O157:H7 and S. enterica contamination of fresh vegetables during primary production are presented.  相似文献   

14.
近年来, 生物传感器因具有快速、简便、灵敏度高、低成本等优势被广泛应用到临床检测、环境监测等领域。该技术在食品安全领域也逐步得到重视, 尤其在病原微生物的快速检测方面。本文从免疫识别和核酸识别两方面简要介绍生物传感器技术检测食源性大肠杆菌O157:H7研究的最新进展, 对生物传感器技术存在的问题及未来的研究方向进行了总结及展望。  相似文献   

15.
ABSTRACT: The heat-resistance data in meat and poultry for various strains of Salmonella, Listeria monocytogenes , and Escherichia coli O157:H7 as well as Listeria innocua M1 are summarized. Heat resistance of these organisms is affected by many factors. Different strains of the same organism have different responses to heat. Heat resistance can also be influenced by the age of the culture, growth conditions, pH, and numerous other factors. Data from this review may prove useful to processors in validating their times and temperatures for thermal processing of meat and poultry. The obvious gaps in the data will provide researchers opportunities to fill those gaps. In addition, it will encourage the development of surrogates, whether biological or otherwise, that will be able to be used in an actual processing environment.  相似文献   

16.
Contamination of raw nuts, including almonds, is a food safety concern. Cold plasma is a novel antimicrobial intervention that can eliminate foodborne pathogens. The objective of this work was to evaluate the efficacy of rapid cold plasma treatments in eliminating Salmonella and Escherichia coli O157:H7 from dry almonds. Three isolates of Salmonella (S. Anatum F4317, S. Stanley H0558, and S. Enteritidis PT30) and 3 isolates of E. coli O157:H7 (C9490, ATCC 35150, and ATCC 43894) were separately grown and spot-inoculated (10 μL) onto whole almonds and allowed to dry for 10 min. Inoculated almonds were treated with a cold plasma jet, with treatment variables evaluated in a factorial design for each isolate: time, distance, and feed gas. Treatment time was 0 s (control), 10 s, or 20 s. Distance from the emitter was 2, 4, or 6 cm. Feed gas was dry air or nitrogen. After treatment, the almonds were sampled using swabs. Survivors were enumerated on tryptic soy agar (TSA) plates. Cold plasma significantly reduced both pathogens on almonds. The greatest reduction observed was 1.34 log cfu/mL reduction of E. coli O157:H7 C9490 after 20 s treatment at 6 cm spacing. The interaction of treatment time with distance from plasma emitter head was complex, and isolate-dependent. Longer duration of treatment did not always result in enhanced reductions. In general, nitrogen as a feed gas resulted in a reduced antimicrobial efficacy compared to dry air. These results indicate that short pulses of atmospheric pressure cold plasma can significantly reduce Salmonella and E. coli O157:H7 on almonds.  相似文献   

17.
Microwave (MW) heating using continuous power output with feedback control and a modified ingredient formulation may provide better and consistent cooking of foods. Currently, household units with build-in inverter power supply units are available. These new generation MW ovens provide continuous, adjustable output and cooking, in contrast to the traditional rectifier-based ovens that rely on the on-off mechanism for control. This study attempted to apply a feedback power control (termed as modified or "smart" MW oven) and phosphate treatment to further improve heating uniformity and enhance food quality and safety. Listeria monocytogenes (Lm, 4-strain cocktail), Escherichia coli O157:H7 (Ec, 5-strain cocktail), and Salmonella spp. (Sal, 6-strain cocktail), surface inoculated onto catfish fillets (75 × 100 × 15 mm; weight 110 g), were heated using the modified MW oven to study the inactivation of the pathogens. The sensitivity of these 3 bacteria to MW heating was in the order of Ec (most), Lm, and Sal (least). Greater than 4 to 5 log CFU reductions of Ec, Lm, or Sal counts on catfish fillet surfaces were inactivated within 2 min of 1250 W MW heating, where the fillet surface temperature increased from 10 to 20 °C to 80 to 90 °C. MW heating caused degradation of catfish fillet texture, which was noticeable as early as 10 to 15 s after the heating started, as evidenced by bumping sounds. Bumping can be significantly reduced by soaking fillets in phosphate solution. However, the results may need verification if applied in different MW ovens and/or with foods positioned away the geometric oven center. This study successfully demonstrated the feasibility of applying MW energy to eliminate foodborne pathogens on fish fillets. Practical Application: The results demonstrated in this report with the "smart" microwave oven design may enhance microwaveable food safety and quality, and therefore promote the microwaveable food business.  相似文献   

18.
Five strains of Escherichia coli O157:H7 with ATCC 11775 E. coli were grown in brain heart infusion (BHI) broth (pH 5.8, adjusted with citric acid) and treated with butylated hydroxyanisole (BHA), butylated hy-droxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and propyl gallate (PG) individually or combined. Additives ranged from 100–400 ppm with inocula levels between 5 and 104 CFU/mL in tissue culture plates or in flasks; samples were incubated at 4°C or 37°C for 24 hr. Additive antimicrobial efficacy varied with inoculum level and incubation temperature. BHA at <200 ppm was bactericidal on all strains. Poly-hydroxyl additives (TBHQ, PG) were less effective at 4°C. BHA-BHT combinations were synergistic at 4°C.  相似文献   

19.
A survey of beef carcasses was conducted in all 10 European community approved abattoirs in Northern Ireland to determine the incidence of Escherichia coli O157:H7. Analyses were based on excised samples of neck meat taken less than 48 h post-kill. Overall, 780 carcasses were sampled and all were negative for E. coli O157:H7. A sub-set of samples was analysed for the presence of Listeria monocytogenes (n=200), Salmonella (n=200) and Campylobacter spp.(n=100). L. monocytogenes was not detected but Listeria innocua was found on five carcasses and Listeria seeligeri on one. Three carcasses carried salmonellas; Salmonella Mbandaka was found on two and Salmonella Thompson on one. Campylobacter spp. were not detected on any carcasses. The results indicate that very few beef carcasses in Northern Ireland appear to carry any of the four pathogens sought, and this may help explain the low incidence of E. coli O157:H7 in the Northern Ireland human population, relative to the rest of the UK.  相似文献   

20.
MR Choi  Q Liu  SY Lee  JH Jin  S Ryu  DH Kang 《Food microbiology》2012,32(1):191-195
This research was initiated to assess the efficacy of gaseous ozone for inactivation Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in apple juice. Juice samples with solids content of 18, 36, and 72 °Brix inoculated with a culture cocktail of three foodborne pathogens were treated with gaseous ozone at a flow rate of 3.0 L/min and an ozone generation rate of 0.10, 0.90, 3.51, and 5.57 g/h for 0.5, 1, 5, and 10 min, respectively. The inactivation kinetics of gaseous ozone on foodborne pathogens conformed to the Weibull model. The time required to achieve a 5 log reduction (t5d) was estimated using the parameters of the Weibull model. The t5d increased with increasing solids content of apple juice. The ozone generation rate did not impart a significant effect (p > 0.05) on t5d. Gaseous ozone is effective at inactivating foodborne pathogens in apple juice but the efficacy is dependent on the solids content of the juice sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号