首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The parameters identification problem of the gradient-enhanced continuum damage model is examined by means of an inverse analysis. Different related issues are analyzed: (i) the investigation of the limits of applicability and predictability of the adopted numerical model and (ii) the problem of objectively extracting material properties from a structural response.A necessary condition for an adequate identification of the model parameters is the well-posedness of the inverse problem. The results show that this requirement is obtained only if additional averaged local experimental information is involved in the inverse procedure, in addition to the global structural force-deformation response. Moreover, the adopted numerical model reveals limitations in predicting the entire size effect curve of tensile tests on dog-bone-shaped concrete specimens.  相似文献   

2.
There are many situations in which it is necessary to increase the capacity of structures in use. This need maybe either for a change of use or because the structures have suffered some damage or have shown little resistance in case of extreme loads such as earthquakes. The most common methods for repair and retrofit of reinforced concrete columns are concrete jacketing, steel jacketing and fiber wrapping. This last type of reinforcement has many advantages as it offers a high-strength, low-weight and corrosion-resistant jacket with easy and rapid installation. The reinforcement with composite materials improves shear and compression strength and ductility as a result of concrete core confinement. The present analytical and numerical ability to quantify the efficiency of fiber confinement is rather limited, especially with respect to ductility.A constitutive model that approximately reproduces the behavior of structural concrete elements under confinement is developed in this paper. The model allows the assessment of concrete columns and bridge piles repaired and/or reinforced with fiber reinforced composites (FRP). The model presented is a modification of an existing coupled plastic damage model. A new definition for the plastic hardening variable and a new yielding surface with curved meridians are proposed. Both improvements enable the adequate reproduction of concrete behavior in high confinement conditions.The comparison of numerical and experimental results shows the model capacity to simulate concrete behavior under triaxial compression conditions like the ones present in concrete columns confined with fiber reinforced composites.  相似文献   

3.
《Computers & Structures》2002,80(14-15):1279-1293
This paper deals with the computational analysis of strain localization problems using nonlocal continuum damage models of the integral type. The general framework for a consistent derivation of the “nonlocal” tangent stiffness is presented. The properties of the tangent stiffness matrix are discussed and the corresponding assembly procedure is described. The quadratic rate of convergence of the Newton–Raphson iteration procedure is demonstrated and the efficiency of the proposed technique is compared to the standard approach based on the secant or elastic stiffness matrices. In this context, performance of direct and iterative solvers for the linearized equilibrium equations is also examined.  相似文献   

4.
边缘增强型非局部模型超分辨率重建算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对一些超分辨率重建算法鲁棒性差、边缘保持能力有限、降噪效果不理想等不足,提出一种基于最大后验概率估计的边缘增强型非局部模型超分辨率重建算法。算法引入了非局部模型,并将图像的边缘信息加入模型系数的计算中,是对基于BTV(bilateral total variance)模型超分辨率重建和基于MRF(Markov random field)模型超分辨率重建的有效改进,提高了算法的鲁棒性、边缘保持能力和降噪能力。实验结果表明,该算法性能稳定,在信噪比较低情况下也能保持图像的边缘信息,取得比较好的重建效果。  相似文献   

5.
针对灰度非均匀的图像,提出一种基于局部符号差能量的非局部图像分割模型。该模型包含基于局部符号差能量的数据驱动项和非局部全变分正则项,具有局部可分离性和全局一致性的特点。由于本文模型是凸的,因此在数值实现上可以采用split-Bregman迭代算法,具有较快的运算速度。同经典的基于局部区域的主动轮廓分割模型相比,该方法具有以下优点:(1)该模型受初始化的影响很小;(2)采用split-Bregman迭代算法,运算速度更快;(3)能够对具有细密纹理和具有弱边缘目标的图像进行正确分割。实验结果表明,该模型对灰度非均匀图像能够进行较准确的分割,相比其他模型具有更好的鲁棒性。  相似文献   

6.
Pure elastic damage models or pure elastic plastic constitutive laws are not totally satisfactory to describe the behaviour of concrete. They indeed fail to reproduce the unloading slopes during cyclic loading which define experimentally the value of the damage in the material. When coupled effects are considered, in particular in hydro-mechanical problems, the capability of numerical models to reproduce the unloading behaviour is essential, because an accurate value of the damage, which controls the material permeability, is needed. In the context of very large size calculations that are needed for 3D massive structures heavily reinforced and pre-stressed (such as containment vessels), constitutive relations ought also to be as simple as possible. Here an elastic plastic damage formulation is proposed to circumvent the disadvantages of pure plastic and pure damage approaches. It is based on an isotropic damage model combined with a hardening yield plastic surface in order to reach a compromise as far as simplicity is concerned. Three elementary tests are first considered for validation. A tension test, a cyclic compression test and triaxial tests illustrate the improvements achieved by the coupled law compared to a simple damage model (plastic strains, change of volumetric behaviour, decrease in the elastic slope under hydrostatic pressures). Finally, one structural application is also considered: a concrete column wrapped in a steel tube.  相似文献   

7.
The considerable and significant progress achieved in the design and development of new interaction devices between man and machine has enabled the emergence of various powerful and efficient input and/or output devices. Each of these new devices brings specific interaction modes.With the emergence of these devices, new interaction techniques and modes arise and new interaction capabilities are offered. New user interfaces need to be designed or former ones need to evolve. The design of so called plastic user interfaces contributes to handling such evolutions. The key requirement for the design of such a user interface is that the new obtained user interface shall be adapted to the application and have, at least, the same behavior as the previous (adapted) one. This paper proposes to address the problem of user interface evolution due to the introduction of new interaction devices and/or new interaction modes. More, precisely, we are interested by the study of the design process of a user interface resulting from the evolution of a former user interface due to the introduction of new devices and/or new interaction capabilities. We consider that interface behaviors are described by labelled transition systems and comparison between user interfaces is handled by an extended definition of the bi-simulation relationship to compare user interface behaviors when interaction modes are replaced by new ones.  相似文献   

8.

The paper presents a novel nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates. To observe the length scale and size-dependency effects of nanostructures, the nonlocal strain gradient theory (NSGT) is considered. The present model is efficient to capture both nonlocal effects and strain gradient effects in nanoplate structures. In addition, the material properties of the FG-CNTRC are assumed to be graded in the plate thickness direction. Based on the higher order shear deformation theory (HSDT), the weak form of the governing equations of motion of the nanoplates is presented using the principle of virtual work. Afterward, the natural frequency and deflection of the nanoplates are made out of isogeometric analysis (IGA). Thanks to higher order derivatives and continuity of NURBS basic function, IGA is suitable for the weak form of NSGT which requires at least the third-order derivatives in approximate formulations. Effects of nonlocal parameter, strain gradient parameter, carbon nanotube (CNT) volume fraction, distributions of CNTs and length-to-thickness ratios on deflection and natural frequency of the nanoplates are examined and discussed in detail. Numerical results are developed to show the phenomenon of stiffness-softening and stiffness-hardening mechanisms of the present model.

  相似文献   

9.
For energy absorbing structures made up of ductile materials, the plastic strain accumulation often leads to early material damage and failure, which can deteriorate the overall structural performance. The goal of this work is to limit this damage in elastoplastic designs using the density-based topology optimization framework such that the optimized structures can absorb energy in a more controllable manner. To this end, an implicit nonlocal coupled elastoplastic damage model is considered for simulating the material damage and softening behavior. The nonlocal effect from the void elements is removed by introducing a scaling scheme for the nonlocal parameters. Path-dependent sensitivity is derived analytically using an adjoint method whose accuracy is further verified by the central difference method. The effectiveness of the proposed method is demonstrated through several numerical examples. It is shown that the load-carrying capacity, ductility, as well as ultimate plastic work dissipation capacity of the optimized design, can be considerably improved by the proposed method.  相似文献   

10.
Articular cartilage (AC) is a biological tissue that allows the distribution of mechanical loads and movement of joints. The presence of these mechanical loads influences the behavior and physiological condition of AC. The loads may cause damaged by fatigue through injuries due to repeated accumulated stresses. The aim of this work is to introduce a phenomenological mathematical model of damage caused by mechanical action. It is considered that tissue failure is a consequence of chondrocyte death and matrix loss, taking into account factors modifying fatigue resistance such as age, body mass index (BMI) and metabolic activity. The model was numerically implemented using the finite elements method and the results obtained allowed us to predict tissue failure at different loading frequencies, different damage sites and variations in damage magnitude. Qualitative concordance between numerical results and experimental data led us to conclude that the model may be useful for physicians and therapists as a prediction tool for prescribing physical exercise and prognosis of joint failure.  相似文献   

11.
基于非局部总变差的图像分割活动轮廓模型*   总被引:2,自引:1,他引:1  
在一般活动轮廓模型的连续全局极小化方法基础上,利用四种非局部总变差,给出了一种具有连续全局极小解的非局部活动轮廓模型。由于该模型的非局部特性,在分割过程中能有效地去除图像中的噪声,同时保留那些重复的精细结构。数值实验证明,该模型能将图像中的主体结构和精细结构很好地分割出来,而标准活动轮廓模型的分割结果中则丢掉了许多小的精细结构。  相似文献   

12.
13.
This paper presents an unsupervised structural damage pattern recognition approach based on the fuzzy clustering and the artificial immune pattern recognition (AIPR). The fuzzy clustering technique is used to initialize the pattern representative (memory cell) for each data pattern and cluster training data into a specified number of patterns. To improve the quality of memory cells, the artificial immune pattern recognition method based on immune learning mechanisms is employed to evolve memory cells. The presented hybrid immune model (combined with fuzzy clustering and the artificial immune pattern recognition) has been tested using a benchmark structure proposed by the IASC–ASCE (International Association for Structural Control–American Society of Civil Engineers) Structural Health Monitoring Task Group. The test results show the feasibility of using the hybrid AIPR (HAIPR) method for the unsupervised structural damage pattern recognition.  相似文献   

14.
针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法.首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,利用贝叶斯最小二乘估计对Shearlet系数进行自适应收缩去噪,重构得到初始去噪图像;最后,利用非局域自相似模型对初始去噪图像进行滤波处理,得到最终的去噪图像.实验结果表明,所提方法在更好地保留边缘特征的同时,有效地去除噪声和收缩去噪引入的Gibbs伪影,该方法获得的峰值信噪比(PSNR)和结构自相似指标(SSIM)比基于非抽样剪切波变换(NSST)的硬阈值去噪方法提高1.41 dB和0.08;比非抽样Shearlet域GSM模型去噪方法提高1.04 dB和0.045;比基于三变量模型的剪切波去噪方法提高0.64 dB和0.025.  相似文献   

15.
《Computers & Structures》2002,80(5-6):417-436
This paper introduces a structural identification technique built on finite element (FE) model updating. The FE model is parameterized by a structural parameter that continuously describes the damage in the structure, and besides, an evolution equation of this damage parameter is presented. The model updating is accomplished by determining the subset of this damage parameters that minimizes a global error derived from the dynamic residue vectors, which is obtained by introducing the experimental modal properties into the original model eigenproblem. A mode-shape projection technique is used in order to achieve compatibility between the dimension of the experimental and analytical models. The adjusted model maintains basic properties of the analytical model as the sparsity and the symmetry, which plays an important role in model updating-based damage identification. The verification and assessment of the current structural defect identification is performed on a analytically derived bidimensional truss structure and on a cantilever bidimensional Euler–Bernouilli beam through a virtual test simulator. This simulator is used to realistically simulate the corrupting effects of noise, filtering, digital sampling and truncation of the modal spectrum. The eigensystem realization algorithm along with the common-based normalized system identification were utilized to obtain the required natural frequencies and mode shapes.  相似文献   

16.
17.
Computational Visual Media - It is challenging to consistently smooth natural images, yet smoothing results determine the quality of a broad range of applications in computer vision. To achieve...  相似文献   

18.
19.
This paper presents a theoretical nonlocal model for a thermo-sensitive nanobeam based on the generalized thermoelasticity theory with thermal relaxation time. The present nanobeam is subjected to a sinusoidal pulse varying heat and its thermal conductivity is considered to be variable. This article deals with a nonlinear coupling partial differential equation since the thermal conductivity depends on temperature. The nonlocal theories of coupled thermoelasticity can be extracted as limited and special case of the present model. The effect of the variability thermal conductivity parameter, the nonlocal parameter, the relaxation time and the pulse width of the sinusoidal pulse on the distribution of lateral vibration, the temperature and the displacement of the nanobeam is investigated.  相似文献   

20.
针对非局部平均(NLM)方法对椒盐噪声图像滤波效果较差的问题,通过引入噪声检测结果扩展NLM方法去除图像中椒盐噪声。在噪声检测阶段,利用图像的两个极值Lmin和Lmax把图像像素点分为非噪声点和噪声点。在滤波阶段,非噪声点的灰度值保持不变。对于噪声点,如果以该噪声点为中心的自适应滤波窗口内均为噪声点,则认为该噪声点位于图像自身灰度值为Lmin或Lmax的区域内,使用两个极值的统计结果进行恢复。否则,采用改进的NLM方法滤除噪声。构造联合噪声检测模板避免噪声点对相似权计算的干扰,噪声点的恢复值由非噪声点的灰度值加权平均得到。此外,采用迭代滤波策略对高密度噪声图像噪声点进行恢复。相关去噪实验结果证实了算法去噪的有效性,不足之处是算法的时间复杂度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号