首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a fuzzy language to extract information from the web extending the web query language WebSQL [1]. These extensions are based on two observations: the inadequacy of traditional Boolean query languages for web documents, and the need to move beyond the notion of query providing just a set of answers in order to provide a better data presentation through answers' restructuring. In order to address the first issue, we consider fuzzy sets to express imprecision in data, queries and answers. In our case, data imprecision comes from the data classification provided by several search engines. Query imprecision occurs in weighting values provided at query definition time. Answer imprecision allows to filter and rank the answers. To address the second point, we provide an answer restructuring language to model the restructuring phase that follows the query phase. The restructuring language allows creation/deletion of links and page creation. Thus several answer organizations are possible as a result to the same query. The resulting language extends in a uniform framework WebSQL. Then we provide a mapping for the language constructs into an extended relational algebra called SAMEW[2] expressing similarity-based queries over imprecisely classified data, queries involving navigation among web pages and answer restructurings. Finally, we study the optimization of similarity-based queries using equivalence and containment rules holding for SAMEWand presenting several algorithms for query evaluation.  相似文献   

2.
Modern search engines employ advanced techniques that go beyond the structures that strictly satisfy the query conditions in an effort to better capture the user intentions. In this work, we introduce a novel query paradigm that considers a user query as an example of the data in which the user is interested. We call these queries exemplar queries. We provide a formal specification of their semantics and show that they are fundamentally different from notions like queries by example, approximate queries and related queries. We provide an implementation of these semantics for knowledge graphs and present an exact solution with a number of optimizations that improve performance without compromising the result quality. We study two different congruence relations, isomorphism and strong simulation, for identifying the answers to an exemplar query. We also provide an approximate solution that prunes the search space and achieves considerably better time performance with minimal or no impact on effectiveness. The effectiveness and efficiency of these solutions with synthetic and real datasets are experimentally evaluated, and the importance of exemplar queries in practice is illustrated.  相似文献   

3.
This paper presents a framework for querying inconsistent databases in the presence of functional dependencies. Most of the works dealing with the problem of extracting reliable information from inconsistent databases are based on the notion of repair, a minimal set of tuple insertions and deletions which leads the database to a consistent state (called repaired database), and the notion of consistent query answer, a query answer that can be obtained from every repaired database. In this work, both the notion of repair and query answer differ from the original ones. In the presence of functional dependencies, tuple deletions are the only operations that are performed in order to restore the consistency of an inconsistent database. However, deleting a tuple to remove an integrity violation potentially eliminates useful information in that tuple. In order to cope with this problem, we adopt a notion of repair, based on tuple updates, which allows us to better preserve information in the source database. A drawback of the notion of consistent query answer is that it does not allow us to discriminate among non-consistent answers, namely answers which can be obtained from a non-empty proper subset of the repaired databases. To obtain more informative query answers, we propose the notion of probabilistic query answer, that is query answers are tuples associated with probabilities. This new semantics of query answering over inconsistent databases allows us to give a measure of uncertainty to query answers. We show that the problem of computing probabilistic query answers is FP #P -complete. We also propose a technique for computing probabilistic answers to arbitrary relational algebra queries.  相似文献   

4.
The problem of managing and querying inconsistent databases has been deeply investigated in the last few years. As the problem of consistent query answering is hard in the general case, most of the techniques proposed so far have an exponential complexity. Polynomial techniques have been proposed only for restricted forms of constraints (such as functional dependencies) and queries. In this paper, a technique for computing “approximate” consistent answers in polynomial time is proposed, which works in the presence of a wide class of constraints (namely, full constraints) and Datalog queries. The proposed approach is based on a repairing strategy where update operations assigning an undefined truth value to the “reliability” of tuples are allowed, along with updates inserting or deleting tuples. The result of a repair can be viewed as a three-valued database which satisfies the specified constraints. In this regard, a new semantics (namely, partial semantics) is introduced for constraint satisfaction in the context of three-valued databases, which aims at capturing the intuitive meaning of constraints under three-valued logic. It is shown that, in order to compute “approximate” consistent query answers, it suffices to evaluate queries by taking into account a unique repair (called deterministic repair), which in some sense “summarizes” all the possible repairs. The so obtained answers are “approximate” in the sense that are safe (true and false atoms in the answers are, respectively, true and false under the classical two-valued semantics), but not complete.  相似文献   

5.
6.
This article addresses the problem of performing Nearest Neighbor (NN) queries on uncertain trajectories. The answer to an NN query for certain trajectories is time parameterized due to the continuous nature of the motion. As a consequence of uncertainty, there may be several objects that have a non-zero probability of being a nearest neighbor to a given querying object, and the continuous nature further complicates the semantics of the answer. We capture the impact that the uncertainty of the trajectories has on the semantics of the answer to continuous NN queries and we propose a tree structure for representing the answers, along with efficient algorithms to compute them. We also address the issue of performing NN queries when the motion of the objects is restricted to road networks. Finally, we formally define and show how to efficiently execute several variants of continuous NN queries. Our experiments demonstrate that the proposed algorithms yield significant performance improvements when compared with the corresponding naïve approaches.  相似文献   

7.
In this paper, we study a variant of reachability queries, called label-constraint reachability (LCR) queries. Specifically, given a label set S and two vertices u1 and u2 in a large directed graph G, we check the existence of a directed path from u1 to u2, where edge labels along the path are a subset of S. We propose the path-label transitive closure method to answer LCR queries. Specifically, we t4ransform an edge-labeled directed graph into an augmented DAG by replacing the maximal strongly connected components as bipartite graphs. We also propose a Dijkstra-like algorithm to compute path-label transitive closure by re-defining the “distance” of a path. Comparing with the existing solutions, we prove that our method is optimal in terms of the search space. Furthermore, we propose a simple yet effective partition-based framework (local path-label transitive closure+online traversal) to answer LCR queries in large graphs. We prove that finding the optimal graph partition to minimize query processing cost is a NP-hard problem. Therefore, we propose a sampling-based solution to find the sub-optimal partition. Moreover, we address the index maintenance issues to answer LCR queries over the dynamic graphs. Extensive experiments confirm the superiority of our method.  相似文献   

8.
Reachability query plays a vital role in many graph analysis tasks. Previous researches proposed many methods to efficiently answer reachability queries between vertex pairs. Since many real graphs are labeled graph, it highly demands Label-Constrained Reachability (LCR) query in which constraint includes a set of labels besides vertex pairs. Recent researches proposed several methods for answering some LCR queries which require appearance of some labels specified in constraints in the path. Besides that constraint may be a label set, query constraint may be ordered labels, namely OLCR (Ordered-Label-Constrained Reachability) queries which retrieve paths matching a sequence of labels. Currently, no solutions are available for OLCR. Here, we propose DHL, a novel bloom filter based indexing technique for answering OLCR queries. DHL can be used to check reachability between vertex pairs. If the answers are not no, then constrained DFS is performed. So, we employ DHL followed by performing constrained DFS to answer OLCR queries. We show that DHL has a bounded false positive rate, and it’s powerful in saving indexing time and space. Extensive experiments on 10 real-life graphs and 12 synthetic graphs demonstrate that DHL achieves about 4.8–22.5 times smaller index space and 4.6–114 times less index construction time than two state-of-art techniques for LCR queries, while achieving comparable query response time. The results also show that our algorithm can answer OLCR queries effectively.  相似文献   

9.
10.
黄飞  刘杰  叶丹 《计算机应用研究》2009,26(11):4146-4150
完整性约束常用来定义数据库的数据语义,违反约束的数据库实例为不一致数据库,返回含有不一致结果的查询称为不一致查询。一致性查询目的在于不修改数据库实例而从不一致数据库获取满足约束的查询结果,已有方法因其支持的约束类型有限或计算复杂度高而影响其应用范围。提出了一种基于空值修复的数据库一致性查询方法,首先将原始完整性约束转换为与查询相关的统一约束,然后根据统一约束对原SQL查询进行查询重写,重写后的查询将不一致属性值当做空值来处理以获得满足完整性约束的结果。系统实现与实验证明,该方法在多种完整性约束类型与SQL  相似文献   

11.
Search engines are increasingly efficient at identifying the best sources for any given keyword query, and are often able to identify the answer within the sources. Unfortunately, many web sources are not trustworthy, because of erroneous, misleading, biased, or outdated information. In many cases, users are not satisfied with the results from any single source. In this paper, we propose a framework to aggregate query results from different sources in order to save users the hassle of individually checking query-related web sites to corroborate answers. To return the best answers to the users, we assign a score to each individual answer by taking into account the number, relevance and originality of the sources reporting the answer, as well as the prominence of the answer within the sources, and aggregate the scores of similar answers. We conducted extensive qualitative and quantitative experiments of our corroboration techniques on queries extracted from the TREC Question Answering track and from a log of real web search engine queries. Our results show that taking into account the quality of web pages and answers extracted from the pages in a corroborative way results in the identification of a correct answer for a majority of queries.  相似文献   

12.
We consider the problem of retrieving consistent answers over databases that might be inconsistent with respect to a set of integrity constraints. In particular, we concentrate on sets of constraints that consist of key dependencies, and we give an algorithm that computes the consistent answers for a large and practical class of conjunctive queries. Given a query q, the algorithm returns a first-order query Q (called a query rewriting) such that for every (potentially inconsistent) database I, the consistent answers for q can be obtained by evaluating Q directly on I.  相似文献   

13.
In complex search tasks, it is often required to pose several basic search queries, join the answers to these queries, where each answer is given as a ranked list of items, and return a ranked list of combinations. However, the join result may include too many repetitions of items, and hence, frequently the entire join is too large to be useful. This can be solved by choosing a small subset of the join result. The focus of this paper is on how to choose this subset. We propose two measures for estimating the quality of result sets, namely, coverage and optimality ratio. Intuitively, maximizing the coverage aims at including in the result as many as possible appearances of items in their optimal combination, and maximizing the optimality ratio means striving to have each item appearing only in its optimal combination, i.e., only in the most highly ranked combination that contains it. One of the difficulties, when choosing the subset of the join in a complex search, is that there is a conflict between maximizing the coverage and maximizing the optimality ratio. In this paper, we introduce the measures coverage and optimality ratio. We present new semantics for complex search queries, aiming at providing high coverage and high optimality ratio. We examine the quality of the results of existing and the novel semantics, according to these two measures, and we provide algorithms for answering complex search queries under the new semantics. Finally, we present an experimental study, using Yahoo! Local Search Web Services, of the efficiency and the scalability of our algorithms, showing that complex search queries can be evaluated effectively under the proposed semantics.  相似文献   

14.
The visual object query language (VOQL) recently proposed for object databases has been successful in visualizing path expressions and set-related conditions, and providing formal semantics. However, VOQL has several problems. Due to unrealistic assumptions, only set-related conditions can be represented in VOQL. Due to lack of the explicit language construct for the notion of variables, queries are often awkward and less intuitive.In this paper, we propose VOQL*, which extends VOQL to remove these drawbacks. We introduce the notion of visual variables and refine the syntax and semantics of VOQL based on visual variables. We carefully design the language constructs of VOQL*to reflect the syntax of OOPC, so that the constructs such as visual variables, visual elements, simple terms, structured terms,basic formulas , formulas, and query expressions in VOQL*are hierarchically and inductively constructed as those of OOPC. Most important, we formally define the semantics of each language construct of VOQL*by induction using OOPC. Because of the well-defined syntax and semantics, queries in VOQL*are clear, concise, and intuitive. We also provide an effective procedure to translate queries in VOQL*into those in OOPC. We believe that VOQL*is the first visual query language with the well-defined syntax reflecting the syntactic structure of logic and semantics formally defined by induction.  相似文献   

15.
Querying polyphonic music from a large data collection is an interesting topic. Recently, researchers have attempted to provide efficient methods for content-based retrieval in polyphonic music databases where queries are polyphonic. However, most of them do not work well for similarity search, which is important to many applications. In this paper, we propose three polyphonic representations with the associated similarity measures and a novel method to retrieve k music works that contain segments most similar to the query. In general, most of the index-based methods for similarity search generate all the possible answers to the query and then perform exact matching on the index for each possible answer. Based on the edit distance, our method generates only a few possible answers by performing the deletion and/or replacement operations on the query. Each possible answer is then used to perform exact matching on a list-based index, which allows the insertion operations to be performed. For each possible answer, its edit distance to the query is regarded as a lower bound of the edit distances between the matched results and the query. Based on the kNN results that match a possible answer, the possible answers that cannot provide better results are skipped. By using this mechanism, we design a method for efficient kNN search in polyphonic music databases. The experimental results show that our method outperforms the previous methods in efficiency. We also evaluate the effectiveness of our method by showing the search results to the musician and nonmusician user groups. The experimental results provide useful guidelines on the design of a polyphonic music database.  相似文献   

16.
An important feature of a database management systems (DBMS) is its client/server architecture, where managing shared memory among the clients and the server is always an tough issue. However, similarity queries are specially sensitive to this kind of architecture, since the answer sizes vary widely. Usually, the answers of similarity query are fully processed to be sent in full to the user, who often is interested in just parts of the answer, e.g. just few elements closer or farther to the query reference. Compelling the DBMS to retrieve the full answer, further ignoring its majority is at least a waste of server processing power. Paging the answer is a technique that splits the answer onto several pages, following client requests. Despite the success of paging on traditional queries, little work has been done to support it in similarity queries. In this work, we present a technique that not only provides paging in similarity range or k-nearest neighbor queries, but also supports them in two variations: the forward similarity query and the backward similarity query. They return elements either increasingly farther of increasingly closer to the query reference. The reported experiments show that, depending on the proportion of the interesting part over the full answer, both techniques allow answering queries much faster than it is obtained in the non-paged way.  相似文献   

17.
In many decision-making scenarios, decision makers require rapid feedback to their queries, which typically involve aggregates. The traditional blocking execution model can no longer meet the demands of these users. One promising approach in the literature, called online aggregation, evaluates an aggregation query progressively as follows: as soon as certain data have been evaluated, approximate answers are produced with their respective running confidence intervals; as more data are examined, the answers and their corresponding running confidence intervals are refined. In this paper, we extend this approach to handle nested queries with aggregates (i.e., at least one inner query block is an aggregate query) by providing users with (approximate) answers progressively as the inner aggregation query blocks are evaluated. We address the new issues pose by nested queries. In particular, the answer space begins with a superset of the final answers and is refined as the aggregates from the inner query blocks are refined. For the intermediary answers to be meaningful, they have to be interpreted with the aggregates from the inner queries. We also propose a multi-threaded model in evaluating such queries: each query block is assigned to a thread, and the threads can be evaluated concurrently and independently. The time slice across the threads is nondeterministic in the sense that the user controls the relative rate at which these subqueries are being evaluated. For enumerative nested queries, we propose a priority-based evaluation strategy to present answers that are certainly in the final answer space first, before presenting those whose validity may be affected as the inner query aggregates are refined. We implemented a prototype system using Java and evaluated our system. Results for nested queries with a level and multiple levels of nesting are reported. Our results show the effectiveness of the proposed mechanisms in providing progressive feedback that reduces the initial waiting time of users significantly without sacrificing the quality of the answers. Received April 25, 2000 / Accepted June 27, 2000  相似文献   

18.
Data exchange is the problem of taking data structured under a source schema and creating an instance of a target schema that reflects the source data as accurately as possible. In this paper, we address foundational and algorithmic issues related to the semantics of data exchange and to the query answering problem in the context of data exchange. These issues arise because, given a source instance, there may be many target instances that satisfy the constraints of the data exchange problem.We give an algebraic specification that selects, among all solutions to the data exchange problem, a special class of solutions that we call universal. We show that a universal solution has no more and no less data than required for data exchange and that it represents the entire space of possible solutions. We then identify fairly general, yet practical, conditions that guarantee the existence of a universal solution and yield algorithms to compute a canonical universal solution efficiently. We adopt the notion of the “certain answers” in indefinite databases for the semantics for query answering in data exchange. We investigate the computational complexity of computing the certain answers in this context and also address other algorithmic issues that arise in data exchange. In particular, we study the problem of computing the certain answers of target queries by simply evaluating them on a canonical universal solution, and we explore the boundary of what queries can and cannot be answered this way, in a data exchange setting.  相似文献   

19.
With more and more knowledge provided by WWW, querying and mining the knowledge bases have attracted much research attention. Among all the queries over knowledge bases, which are usually modelled as graphs, a keyword query is the most widely used one. Although the problem of keyword query over graphs has been deeply studied for years, knowledge bases, as special error-tolerant graphs, lead to the results of the traditional defined keyword queries out of users’ satisfaction. Thus, in this paper, we define a new keyword query, called confident r-clique, specific for knowledge bases based on the r-clique definition for keyword query on general graphs, which has been proved to be the best one. However, as we prove in the paper, finding the confident r-cliques is #P-hard. We propose a filtering-and-verification framework to improve the search efficiency. In the filtering phase, we develop the tightest upper bound of the confident r-clique, and design an index together with its search algorithm, which suits the large scale of knowledge bases well. In the verification phase, we develop an efficient sampling method to verify the final answers from the candidates remaining in the filtering phase. Extensive experiments demonstrate that the results derived from our new definition satisfy the users’ requirement better compared with the traditional r-clique definition, and our algorithms are efficient.  相似文献   

20.
Generalized queries are defined as sets of clauses in implication form. They cover several tasks of practical importance for database maintenance such as answering positive queries, computing database completions and integrity constraints checking. We address the issue of answering generalized queries under the minimal model semantics for the class of disjunctive deductive databases (DDDBs). The advanced approach is based on having the query induce an order on the models returned by a sound and complete minimal model generating procedure. We consider answers that are true in all and those that are true in some minimal models of the theory. We address the issue of answering positive queries through the construction of the minimal model state of the DDDB, using a minimal model generating procedure. The refinements allowed by the procedure include isolating a minimal component of a disjunctive answer, the specification of possible updates to the theory to enable the derivability of certain queries and deciding the monotonicity properties of answers to different classes of queries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号