首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The boundary-domain element method is applied to the free vibration problem of thin-walled plate structures. The static fundamental solutions are used for the derivation of the integral equations for both in-plane and out-of-plane motions. All the integral equations to be implemented are regularized up to an integrable order and then discretized by means of the boundary-domain element method. The entire system of equations for the plate structures composed of thin elastic plates is obtained by assembling the equations for each plate component satisfying the equilibrium and compatibility conditions on the connected edge as well as the boundary conditions. The algebraic eigenvalue equation is derived from this system of equations and is able to be solved by using the standard solver to obtain eigenfrequencies and eigenmodes. Numerical analysis is carried out for a few example problems and the computational aspects are discussed.  相似文献   

2.
In this paper, the topology optimization design of the free vibrating continuum structures is formulated based on the element free Galerkin (EFG) method. Considering the relative density of nodes as design variable, and the maximization of the fundamental eigenvalue as an objective function, the mathematical formulation of the topology optimization model is developed using the solid isotropic microstructures with penalization (SIMP) interpolation scheme. The topology optimization problem is solved by the optimality criteria method. Finally, the feasibility and efficiency of the proposed method are illustrated with several 2D examples that are widely used in the topology optimization design.  相似文献   

3.
为提高无单元Galerkin(Element-Free Galerkin, EFG)方法的计算效率,将复变量移动最小二乘法与EFG方法结合,利用控制方程的积分弱形式并采用Lagrange乘子法引入边界条件,提出势问题的复变量无单元Galerkin(Complex Variable EFG,CVEFG)方法,并推导相关公式.与传统的EFG方法相比,该方法采用复变量移动最小二乘法可以减少试函数中的待定系数,从而减少计算量、提高计算效率. 最后,给出数值算例验证该方法的有效性.  相似文献   

4.
This paper presents an ant colony optimization (ACO) algorithm incorporating the element free Galerkin (EFG) method for topology optimization of continuum structures. The EFG method is used to derive shape functions using the moving least squares approximation. The essential boundary conditions are enforced by the Lagrange multiplier method. Several numerical examples are presented to show the validity and feasibly of the proposed method. The common numerical instabilities of the ACO algorithm do not exist in the results.  相似文献   

5.
In this paper, a numerical method for linear and nonlinear vibrations analysis of viscoelastic sandwich beams and plates is developed with finite element based solution. This method couples the harmonic balance technique to complex mode Galerkin’s procedure. This results in a scalar nonlinear complex amplitude–frequency relationship involving numerical computation of three coefficients. A general formulation taking into account the frequency dependence of the viscoelastic behaviour allowing to intoduce any viscoelastic law is given. Complex eigenmodes are numerically computed in a general procedure and used as Galerkin’s basis. The free and steady-state vibrations analyses of viscoelastic sandwich beams and plates are investigated for constant and frequency dependent viscoelastic laws and for various boundary conditions. The equivalent frequencies and loss factors as well as forced harmonic response and phase curves are performed. The obtained results show the efficiency of the present approach to large amplitudes vibrations of viscoelastic sandwich structures with nonlinear frequency dependence.  相似文献   

6.
This paper presents the steady-state and transient analysis of the fluid squeezed between two long parallel plates. The governing coupled partial differential equations have been discretized by element free Galerkin method and implemented using variational approach. Penalty and Lagrange multiplier techniques have been utilized to enforce the essential boundary conditions. Four point Gauss quadrature has been used to evaluate the viscous terms in the coefficient matrix whereas reduced integration scheme (i.e. one point Gauss quadrature) has been used to evaluate the penalty terms over two-dimensional domain (Ω). Cubicspline, exponential and rational weight functions have been used in the present work. The results obtained by EFG method are compared with those obtained by finite element and analytical methods. The effect of scaling and penalty parameters on EFG results has been discussed in detail.  相似文献   

7.
The element-free Galerkin (EFG) method is developed in this paper for solving the nonlinear p-Laplacian equation. The moving least squares approximation is used to generate meshless shape functions, the penalty approach is adopted to enforce the Dirichlet boundary condition, the Galerkin weak form is employed to obtain the system of discrete equations, and two iterative procedures are developed to deal with the strong nonlinearity. Then, the computational formulas of the EFG method for the p-Laplacian equation are established. Numerical results are finally given to verify the convergence and high computational precision of the method.  相似文献   

8.
The superior performance of the consistent shell element in the small deflection range has encouraged the authors to extend the formulation to large displacement static and dynamic analyses. The nonlinear extension is based on a total Lagrangian approach. A detailed derivation of the non-linear extension is based on a total Lagrangian approach. A detailed derivation of the non-linear stiffness matrix and the unbalanced load vector for the consistent shell element is presented in this study. Meanwhile, a simplified method for coding the nonlinear formulation is provided by relating the components for the nonlinear B-matrices to those of the linear B-matrix. The consistent mass matrix for the shell element is also derived and then incorporated with the stiffness matrix to perform large displacement dynamic and free vibration analyses of shell structures. Newmark's method is used for time integration and the Newton-Raphson method is employed for iterating within each increment until equilibrium is achieved. Numerical testing of the nonlinear model through static and dynamic analyses of different plate and shell problems indicates excellent performance of the consistent shell element in the nonlinear range.  相似文献   

9.
This paper presents a mixed finite element model for the static analysis of laminated composite plates. The formulation is based on the least-squares variational principle, which is an alternative approach to the mixed weak form finite element models. The mixed least-squares finite element model considers the first-order shear deformation theory with generalized displacements and stress resultants as independent variables. Specifically, the mixed model is developed using equal-order C0 Lagrange interpolation functions of high p-levels along with full integration. This mixed least-squares-based discrete model yields a symmetric and positive-definite system of algebraic equations. The predictive capability of the proposed model is demonstrated by numerical examples of the static analysis of four laminated composite plates, with different boundary conditions and various side-to-thickness ratios. Particularly, the mixed least-squares model with high-order interpolation functions is shown to be insensitive to shear-locking.  相似文献   

10.
11.
This paper presents an accurate and practical technique for coupling shell element models to three-dimensional continuum finite element models. The compatibility between these two types of formulations is enforced by degenerating a continuum element through kinematic constraints compatible with shell deformations. Two formulations of two-dimensional/three-dimensional transition elements are presented. The first and simplest formulation is based on the Mindlin-Reissner plate assumptions, and is found to perform well in a variety of problems involving the analysis of geometrically linear/non-linear laminated structures. The second formulation is based on a higher-order shell theory that allows stretching in the through-the-thickness direction. This additional freedom virtually eliminates the interlaminar normal stress boundary layer that can form in lower-order transition elements. Finally, the coupling of two-dimensional to three-dimensional subdomains is enriched with the use of an interface element, which can be used in conjunction with either transition formulation. The interface element improves the efficiency of the solid-to-shell transition modeling scheme by allowing the independent selection of optimal mesh sizes in the shell and the three-dimensional regions of the model.  相似文献   

12.
为提高断裂弹性动力学问题数值计算的精度,避免出现病态或奇异方程组,基于改进的移动最小二乘法建立三维弹性动力学问题的积分弱形式,采用罚函数法施加位移边界条件,引入隐式时间积分并且结合三维断裂力学的形函数考虑裂纹尖端的奇异性,探究将改进的无单元Galerkin(improved element-free Galerkin,IEFG)法用于断裂弹性动力学问题的数值计算.通过悬臂梁、柱和矩形板等3个算例,讨论节点分布、影响域比例参数、罚因子和时间步长等参数对计算精度的影响,证明IEFG法用于求解三维断裂弹性动力学问题的正确性和有效性.  相似文献   

13.
In this paper, a semi analytical method is used to investigate the free vibration of doubly-curved shells of revolution with arbitrary boundary conditions. The doubly-curved shells of revolution are divided into their segments in the meridional direction, and the theoretical model for vibration analysis is formulated by applying Flügge’s thin shell theory. Regardless of the boundary conditions, the displacement functions of shell segments are composed by the Jacobi polynomials along the revolution axis direction and the standard Fourier series along the circumferential direction. The boundary conditions at the ends of the doubly-curved shells of revolution and the continuous conditions at two adjacent segments were enforced by the penalty method. Then, the natural frequencies of the doubly-curved shells are obtained by using the Rayleigh–Ritz method. For arbitrary boundary conditions, this method does not require any changes to the mathematical model or the displacement functions, and it is very effective in the analysis of free vibration for doubly-curved shells of revolution. The credibility and exactness of proposed method are compared with the results of finite element method (FEM), and some numerical results are reported for free vibration of the doubly-curved shells of revolution under classical and elastic boundary conditions. Results of this paper can provide reference data for future studies in related field.  相似文献   

14.
In this paper, a meshfree method based on the moving Kriging interpolation is further developed for free and forced vibration analyses of two-dimensional solids. The shape function and its derivatives are essentially established through the moving Kriging interpolation technique. Following this technique, by possessing the Kronecker delta property the method evidently makes it in a simple form and efficient in imposing the essential boundary conditions. The governing elastodynamic equations are transformed into a standard weak formulation. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard implicit Newmark time integration scheme. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in details. As a consequence, it is found that the method is very efficient and accurate for dynamic analysis compared with those of other conventional methods.  相似文献   

15.
In this paper we introduce a low order partial hybrid stress solid-shell element based on the composite energy functional for the analysis of laminated composite structures. This solid-shell element has eight nodes with only displacement degrees of freedoms, and three-dimensional constitutive models can be directly employed in the present formulation without any additional treatment. The assumed interlaminar stress field provides very accurate interlaminar stress calculation through the element thickness. These elements can be stacked on top of each other to model multilayer structures, fulfilling the interlaminar stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of the laminate. The present solid-shell does not show the transverse shear, trapezoidal and thickness locking phenomenon, and passes both the membrane and the bending patch tests. To assess the present formulation’s accuracy, a variety of popular numerical benchmark examples related to element convergence, mesh distortion, shell and laminated composite analyses are investigated and the results are compared with those available in the literature. The numerical results show the accuracy of the presented solid-shell element for the analysis of laminated composites.  相似文献   

16.
This study details geometrically and physically nonlinear analysis of thin shells in resonance regions of vibration. Generalized analysis of motion with implementation of the FETM-method and of updated Lagrangian formulation is also studied. Utilization of the multigrid spatial simulation mesh for geometric representation of the shell as well as of the anisotropy of material is put forth. Special numerical techniques for solving nonlinear resonance equations of motion are presented. Illustrative numerical solutions of nonlinear resonance response of thin shell structures are performed.  相似文献   

17.
A lumped triangular element formulation is developed based on a finite difference approach for the large deflection analysis of plates and shallow shells. The presented formulation is independent of the boundary condition (unlike the finite difference formulation) and uses energy principles to derive a set of nonlinear algebraic equations which are solved by using an incremental Newton-Raphson iterative procedure. A study of the large deflection behaviour of thin plates is made for various edge conditions and aspect ratios, and the results obtained are compared with those using a finite element scheme. Representative nondimensional solutions for deflections and stresses are presented in the form of graphs.  相似文献   

18.
Finite element procedures for nonlinear dynamic analysis of shell structures are presented and assessed. Geometric and material nonlinear conditions are considered. Some results are presented that demonstrate current applicabilities of finite element procedures to the nonlinear dynamic analysis of two-dimensional shell problems. The nonlinear response of a shallow cap, an impulsively loaded cylindrical shell and a complete spherical shell is predicted. In the analyses the effects of various finite element modeling characteristics are investigated. Finally, solutions of the static and dynamic large displacement elastic-plastic analysis of a complete spherical shell subjected to external pressure are reported. The effect of initial imperfections on the static and dynamic buckling behavior of this shell is presented and discussed.  相似文献   

19.
We present a least-squares based finite element formulation for the numerical analysis of shear-deformable shell structures. The variational problem is obtained by minimizing the least-squares functional, defined as the sum of the squares of the shell equilibrium equations residuals measured in suitable norms of Hilbert spaces. The use of least-squares principles leads to a variational unconstrained minimization problem where compatibility conditions between approximation spaces never arise, i.e. stability requirements such as inf–sup conditions never arise. The proposed formulation retains the generalized displacements and stress resultants as independent variables and, in view of the nature of the variational setting upon which the finite element model is built, allows for equal-order interpolation. A p-type hierarchical basis is used to construct the discrete finite element model based on the least-squares formulation. Exponentially fast decay of the least-squares functional is verified for increasing order of the modal expansions. Several well established benchmark problems are solved to demonstrate the predictive capability of the least-squares based shell elements. Shell elements based on this formulation are shown to be effective in both membrane- and bending-dominated states.  相似文献   

20.
The behavior of orthotropic layered slabs and cylinders in which the temperature and stress distributions vary in the thickness direction is investigated. A finite element formulation utilizing quadratic layer elements and linear interface elements are used to perform the analyses. The transient heat conduction response is obtained using implicit linear time interpolation including the Crank-Nicolson, Galerkin and Euler backward schemes. It is shown that the modified Crank-Nicolson and modified Galerkin schemes provide computationally economical solutions which are both accurate and free of temporal oscillations. The effects of heat-transfer resistance at layer contact surfaces are illustrated through numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号