首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effect of coatings deposited on cutting tools using the PVD method on the tribological characteristics of the surface layer after the finish turning of 41Cr4 and 30CrMnSi steels is considered. The tribological characteristics of the turned surfaces change substantially. The best results are achieved when using the (AlTi)N coating, which ensures substantial decreases in the coefficient of friction (by 35–40%) and the temperature in the friction zone (by up to 30%). The dependences of the wear on the friction path are linear; the wear rate of the surfaces turned by the coated tools is significantly lower than that for the surfaces turned by the uncoated tools. Compared to the uncoated R25 hard alloy, the difference in the wear rates reaches 60% in favor of (AlTi)N and (TiAl)N coatings. A decrease in the thickness of the coating from 4 to 2 μm leads to a growth in the coefficient of friction and the temperature. An X-ray structural analysis of the surface layers of the turned specimens has revealed the presence of Fe-Al solid phases, which improve the wear resistance of the surface and the efficiency of coatings like (AlTi)N.  相似文献   

2.
The aim of this study was to investigate the possibility to replace cemented carbide wire drawing dies with CVD or PVD coated steel dies. Material pick-up tendency, friction and wear characteristics of four different commercial coatings – CVD TiC and PVD (Ti,Al)N, CrN and CrC/C – in sliding contact with ASTM 52100 bearing steel were evaluated using pin-on-disc testing. The load bearing capacity of the coating/substrate composites was evaluated using scratch testing. The results show that the friction characteristics and material pick-up tendency of the coatings to a large extent is controlled by the surface topography of the as-deposited coatings which should be improved by a polishing post-treatment in order to obtain a smooth surface. Based on the results obtained in this study, three different coatings – CrC/C, TiC and dual-layer TiC/CrC/C – are recommended to be evaluated in wire drawing field tests. CrC/C and TiC are recommended due to their intrinsic low friction properties and material pick-up tendency in sliding contact with steel. The dual-layer is recommended in order to combine the good properties of the two coatings CrC/C (low shear strength) and TiC (high hardness).  相似文献   

3.
Composite electrochemical coatings based on nickel with colloidal graphite and graphite bisulphate as a disperse phase are obtained. The electrodeposition of the coatings in a variable potential mode is studied. It is determined that the coefficient of sliding friction for the developed coatings decreases by a factor of two in comparison with nickel coatings without the dispersed phase. It is shown that the coefficient of friction for the coatings decreases as the thickness of the electrolytic deposit rises.  相似文献   

4.
This paper presents an experimental study made on physical-vapor-deposited (PVD) silver films. A conventional ion plating unit was used in depositing ion-plated, vacuum-deposited, and gas-deposited silver films.

Experimental work on nucleation, growth, and interface formation is briefly presented. Some adhesion, microhardness, and x-ray test results are also included. Friction and wear test results are reported in details.

The good lubrication properties are attributed initially to the low shear strength in the direction of sliding, and also to the transfer-back-transfer mechanism. The wear mechanism however, is initially a microcutting process, followed by wear debris abrasion process and, finally, a fatigue wear process.  相似文献   

5.
The tribological properties of the coatings based on fine-grained VK6-M hard alloy, chromium, and molybdenum have been investigated. The coatings were obtained by the electrospark deposition followed by the laser treatment. The electric spark deposition does not affect the coefficient of friction and temperature in the friction zone of the coated surface in contrast to steel 45 surface. Additional laser treatment reduces the dispersion of the friction coefficients and temperatures, but hardly alters their level. The wear rate of the coatings increases in the direction VK6-M → Cr → Mo → steel 45. A hard alloy coating is most effective, since the wear rate decreases as much as 15 times compared to steel 45. The wear rate of the coatings based on chromium and molybdenum is 1.7 and 1.4 times lower than that of steel 45. The laser treatment reduces the wear rate even more, i.e., by 70% for the coating based on the hard alloy and 3.5 and 3 times, respectively, for coatings based on chromium and molybdenum.  相似文献   

6.
A low wear rate, combined with exceptional physical properties, makes diamond an ideal candidate for the machining of non-ferrous materials. It is particularly interesting for tooling aluminium and its alloys as it offers these soft materials clean cutting and lets the shavings slide on the tool surface.It results from studies dealing with the friction of diamond against aluminium, that the tribological behaviour of this pair is greatly influenced by the presence of oxides, more particularly Al2O3, on the counterface surface. It was therefore necessary to better understand the role of these oxides during the cutting process, the way they modify the nature of the contact, and their effects on transferred layer formation.The tribological behaviour of diamond coatings prepared by the combustion flame process, sliding against aluminium alloys under different environments (vacuum, oxygen and water vapour), at two applied normal loads is presented here; the modifications of both the coatings (formation of amorphous carbon) and the counterfaces (depth of the friction track), as well as the transferred layers (chemical composition, aspect) are specifically studied.The surface changes are revealed by scanning electron microscopy observations. Raman spectroscopy and energy dispersive spectroscopy analyses were realised to highlight the observed phenomena.  相似文献   

7.
M. Hua  H.Y. Tam  H.Y. Ma  C.K. Mok 《Wear》2006,260(11-12):1153-1165
Experiments were performed to investigate systematically the influence of sliding speeds on tribological behaviours of in-lined (IN), staggered (ST) spot-islandic and fully coated (FC) physical vapour deposition (PVD) TiN coatings on M2 steel discs sliding with ASSAB 17 tool steel pins. Results revealed that: (i) the friction coefficients of the individual mating couples generally decreased with the sliding speed and the order in increasing magnitude at each specific sliding speed was FC, IN, and ST pair, respectively and (ii) the wear loss was inversely related to the sliding speed, and the wear loss of both the pin and disc of FC mating pair was the largest with ST the second and IN the third. Relevant mechanisms for the friction and the wear loss are proposed and discussed in this paper.  相似文献   

8.
In order to explore the opportunities of using vacuum coatings in tribounits, the triboengineering characteristics of unicomponent PVD coatings were studied based on titanium, zirconium, chrome, tungsten and aluminum in sliding friction interfaced with ShKh15 steel GOST 801-78. The study has revealed coatings with the optimal combination of properties, such as the friction coefficient, the wear resistance, the time of running-in, and the wear ability with respect to the counterbody.  相似文献   

9.
The tribological properties of composite coatings consisting of silica nanoparticles dispersed in either a poly-methylmethacrylate (PMMA) or polystyrene (PS) matrix were assessed. The experiments were conducted using a reciprocating type of micro-tribotester under relatively low normal loads ranging from 5 to 15 mN. Results indicated that the wear resistance of PMMA could be significantly improved by adding silica particles at the cost of increased friction coefficient from 0.27 to 0.4. The effect of silica content on the wear resistance of PS was less apparent. Such outcome was attributed to the difference in the compatibility between silica and the polymer matrix.  相似文献   

10.
500 nm-thick films are deposited on austenitic stainless steel by neutral (Ar+) or reactive (N+) ion beam sputtering of Ni or NiTi targets, with (or without) high energy 160 keV-Ar+ ion beam assistance. Most of the time the coatings are nanocrystalline and induce a large (excellent in some conditions) increase of the wear resistance. Only Ar+ ion beam sputtering of a NiTi target gives an amorphous deposit which does not improve the substrate tribological properties. The hardness and wear resistance of ion beam assisted films are larger than those obtained with non-ion beam assisted coatings. The presence of a hard TiN phase inside a ductile Ni phase, of grains with preferential orientation beneficial to slip, as well as film densification are the main factors which increase the wear resistance. The best results are obtained when the structure is composed of two phases, Ni and TiN. The TiN phase strengthens the already good tribological Ni properties and the Ni ductility induces mechanical accommodation during the friction process.  相似文献   

11.
《Tribology International》2012,45(12):1926-1931
The tribological properties of composite coatings consisting of silica nanoparticles dispersed in either a poly-methylmethacrylate (PMMA) or polystyrene (PS) matrix were assessed. The experiments were conducted using a reciprocating type of micro-tribotester under relatively low normal loads ranging from 5 to 15 mN. Results indicated that the wear resistance of PMMA could be significantly improved by adding silica particles at the cost of increased friction coefficient from 0.27 to 0.4. The effect of silica content on the wear resistance of PS was less apparent. Such outcome was attributed to the difference in the compatibility between silica and the polymer matrix.  相似文献   

12.
The use of PVD coatings in tribological applications becomes more and more widespread. Thus also the need to fully understand the relationships between the intrinsic properties of the coating, the properties of the coating/substrate composite and the tribological performance of the composite in different tribological systems becomes increasingly pressing. One of the tools available for tribological characterization of coatings and coating/substrate composites is scratch testing. In the current paper, Uppsala University presents a selection of results from many years of scratch testing of PVD coated components. Applications range from adhesion assessment and coating quality determination to estimation of coating fracture resistance. Examples in the form of scratch studies of PVD coatings on various high speed steels and tool steels - including failure mode anaiysis in situ SEM - are given.  相似文献   

13.
An intermittent sliding test was used in order to study the formation and build-up of tribofilms during intermittent sliding of PVD coated HSS against case hardening steel (20NiCrMo2). Two cutting tool coatings were tested, TiN and AlCrN, and the influence of sliding speed was evaluated. With moderate speed, two tribofilms were formed separately, one consisting of Mn, Si, Al and O on an intermediate layer of Fe and one consisting of Fe, Mn, Cr and O on an intermediate layer of Cr and Mn. At low sliding speeds an uneven transfer of steel occured while high sliding speeds resulted in thermal softening of the substrate leading to coating failure. AlCrN provided better substrate protection at high speeds than TiN did.  相似文献   

14.
15.
The results of studying the effect of the Tarkosil SiO2 nanopowder on the tribological behavior of the steel-antifriction coating model systems are presented. The dependences of the coefficient of friction, the wear resistance, and the microhardness of the test specimens on the concentration of the silica nanopowder in the thin coatings are obtained. It is shown that the modification of the coatings by 1% of silica favors an increase in their microhardness and a decrease in their coefficient of friction. At the limiting concentrations of the nanosized filler and under heavy specific loads, the brittle fracture of the coatings occurs.  相似文献   

16.
F. Platon  P. Fournier  S. Rouxel 《Wear》2001,250(1-12):227-236
The goal of the study carried out in the laboratory was to quantify the wear and the friction of two materials used for the manufacturing of hip prostheses. Tests used had to obtain in a short time the tribological behaviour laws of the materials. Tests on a hip simulator have been excluded because their cost and their duration were too high for a program of preliminary development of new materials.

To amplify wear phenomena, dry friction tests were carried out for two configurations: ball-on-disc and pin-on-disc. The influence of the contact pressure at constant sliding velocity on the wear of materials has been clearly shown.

Results obtained with several different tested materials (stainless steel/UHMWPE, stainless steel+DLC coating/UHMWPE, stainless steel+DLC coating/stainless steel+DLC coating, titanium alloy+DLC coating/UHMWPE, titanium alloy+DLC coating/titanium alloy+DLC coating, zirconium dioxide/UHMWPE, alumina/UHMWPE, alumina/alumina) have shown the superiority of DLC coatings. Promising results obtained during this study are in the validation stage on a hip simulator.  相似文献   


17.
The frictional and wear characteristics of nanostructured DLC films were investigated. The coatings were deposited on silicon substrates by irradiation of a mass-separated C60 ion beam with 5 keV of energy and a deposition temperature ranging from 100 to 450 °C. The effects of deposition temperature on the surface morphology, nano-structure, mechanical properties and tribological characteristics of the coatings were assessed. Results showed that deposition temperature strongly affects the nanostructure and surface morphology of the coatings. Coatings deposited at temperatures exceeding 350–400 °C exhibited an increase in surface roughness as well as compressive stress due to the formation of graphite, which led to a significant increase in the friction coefficient and wear rate. Coatings deposited at 300 °C showed the best tribological properties.  相似文献   

18.
Ti-6Al-4V alloy rubbing against aluminum-bronze 630 was evaluated in this work. High velocity oxygen fuel (HVOF) WC-10%Co-4%Cr thermal sprayed and TiN, CrN and DLC physical vapor deposition (PVD) coatings were applied to increase titanium substrate wear resistance. Pin-on-disk tests were performed with a normal force of 5 N and at a speed of 0.5 m/s, with a quantitative comparison between the five conditions studied. Results showed higher wear resistance for Ti-6Al-4V alloy DLC coated and aluminum-bronze 630 tribological pair and that the presence of graphite carbon structure acting as solid lubricant was the main wear preventing mechanism.  相似文献   

19.
Zirconium nitride (ZrN) thin films were deposited by reactive RF magnetron sputtering on Ti-6Al-4V and Si (100) substrates for potential use in biomedical applications. The tribological behaviour was evaluated against bovine bone in dry condition using a pin-on-disc apparatus. Abrasion is the primary wear mechanism observed in ZrN/bone contact. The corrosion properties were determined through two electrochemical techniques: potentiodynamic polarization and electrochemical impedance spectroscopy. The coatings with reduced oxygen content provided: (i) good resistance against corrosion when exposed to physiological solution and (ii) better anti-bioadhesion against Staphylococcus aureus bacteria.  相似文献   

20.
Hua  M.  Ma  H.Y.  Mok  C.K.  Li  J. 《Tribology Letters》2004,17(3):645-653
A series of lubricated pin-on-disk wear experiments were performed to investigate the tribological behaviors of in-line (IN) and staggered (ST) patterned PVD TiN coatings as well as a fully TiN-coated (FC) coating on M2 steel against ASSAB 17 tool steel mating pins. The influence of applied load on the tribological behavior of the individual types of coating was also investigated. The experimental results showed that the tribological behavior of the two patterns and the FC M2 steel sliding against tool steel was a function of applied load. The wear resistance for any PVD TiN coating pattern was relatively higher at the specific individual loadings of 394, 800, 900 and 1100 N for 4 h under wet lubrication. Wear loss of the two types of patterned discs and pins was lower than that of the full coating counterpart. Wear mechanisms are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号