首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Friction and wear behavior of electroless Ni-based CNT composite coatings   总被引:1,自引:0,他引:1  
Ni-based carbon nanotube (CNT) composite coatings with different volume fraction (from 5 to 12 vol.%) of CNTs were deposited on medium carbon steel substrates by electroless plating. The friction and wear behavior of the composite coatings were investigated using a pin-on-disk wear tester under unlubricated condition. Friction and wear tests were conducted at a sliding speed of 0.0623 m s−1 and at an applied load of 20 N. The experimental results indicated that the friction coefficient of the composite coatings decreased with increasing the volume fraction of CNTs due to self-lubrication and unique topological structure of CNTs. Within the range of volume fraction of CNTs from 0 to 11.2%, the wear rate of the composite coatings showed a steadily decreasing trend with increasing volume fraction of CNTs. Because of the conglomeration of CNTs in the matrix, however, the wear rate of the composite coatings increased with further increasing the volume fraction of CNTs.  相似文献   

2.
G. Zhang  H. Liao  C. Mateus  C. Coddet 《Wear》2006,260(6):594-600
In this work, polyetheretherketone (PEEK) and PEEK/SiC-composite coatings were deposited on Al substrates using a printing technique to improve their surfaces performance. The objective of this work was to investigate coatings friction and wear behaviour. Especially, the effect of sliding velocity and applied load on coatings friction coefficient and wear rate was evaluated in range of 0.2-1.4 m/s and 1-9 N, respectively. Compared to Al substrate, the coated samples exhibit excellent friction coefficient and wear rate. For PEEK coating, under an applied load of 1 N, the increase in sliding velocity can result in decreasing of friction coefficient at a cost of wear resistance. Under a load of 9 N, however, PEEK coating exhibits the highest friction coefficient and wear rate at an intermediate velocity. These influences appear to be mainly ascribed to the influence of contact temperature of the two relative sliding parts. In most test conditions, the composite coating exhibits better wear resistance and a little higher friction coefficient. SiC reinforcement in composite coating plays a combined role. First of all, it might lead to energy dissipation for activation of fracture occurred on the interface of PEEK and the powders. Moreover, it can reduce coating ploughs and the adhesion between the two relative sliding parts.  相似文献   

3.
Solid lubricated surfaces are now widely used in the tool industry, and the new concept of ‘soft tools’ recently introduced has emphasized low-friction surfaces. The present paper deals with a novel ‘burnishing’ process based on ionic bombardment of powder graphite coating/substrate systems. This process may influence both the coating and the coating/substrate interface, and it is effective for improving lubrication even at low doses of bombarding ions. The present study will discuss the friction and wear properties of graphite-powder coatings on a silicon wafer bombarded with 200 keV ion beams of argon, nitrogen and hydrogen ions, the last two as molecular ions. The coefficients of friction and wear rates of the coatings were found to be strongly dependent on the ion-bombarding species and ion dose. The argon ion bombardment increased the coefficient of friction and wear rate of the powder coating. However, at the interface of the silicon substrate, the ion-induced burnishing improved the tribological behaviour of the silicon material. Bombardment with nitrogen and hydrogen ions showed a marked improvement in the tribological properties of the graphite powder coating. Thus a reduction in wear rate by three orders of magnitude was observed in the case of nitrogen, and for both ions it was noted that ion-beam burnished graphite was lubricating in a dry environment, which has not been reported previously. The perspectives of ion bombardment as a burnishing process will be discussed and the observed effects will be qualitatively explained in the context of the theory for ionic penetration into solids.  相似文献   

4.
Previous reports have described the differences in the friction and wear behavior between different zones of human teeth. The objective of this research was to study the friction and wear behavior of human teeth under different wear conditions to extend the understanding of the tooth wear process, as well as to provide a more rational explanation for wear mechanism of teeth. Two typical wear tests, namely two- and three-body wear, were conducted on human tooth enamel using a reciprocating apparatus. The effect of food particles was of particular interest. Three loads, 10, 20 and 40 N, were used. Wear was assessed by sample wear volume. The results show that human tooth enamel exhibits lower friction and smaller wear volume under three-body wear conditions than under two-body wear conditions. Under three-body wear conditions, although increasing normal load results in a progressive increase in the wear volume of enamel, the increasing rate is lower at high load than that under two-body wear conditions. Further analysis of wear surfaces indicates that human tooth enamel experiences different wear mechanisms under different wear conditions.  相似文献   

5.
The friction and wear behaviour of thin hard coatings, such as TiN and the promising class of C-based coatings (a-C, a-C:H, and diamond for example), are compared under oscillating and reciprocating sliding conditions. The typical effects of test parameters, such as stroke, frequency, normal force, relative humidity and test duration, are described as a basis for the proper selection of test conditions or, conversely, for the selection of suitable coatings for particular practical applications. Friction and wear data from over 1000 vibrating tests using thin hard coatings against 100Cr6 and against Al2O3 have been compiled in a database. This allows easy manipulation and comparison of test results. Using selection criteria and filter procedures (e. g., lifetime of coatings, friction limits, and critical wear rate), suitable coating systems for different test conditions can be chosen from the database. The effects of test parameters on friction and wear behaviour and changes have anyway to be known for meaningful tribotesting, as well as for the selection of coatings.  相似文献   

6.
The aim of the present work is to elucidate the influence of lubricants on the friction behavior of zinc phosphated coatings and provide an explanation for the results in terms of physical–chemical interactions between lubricant and phosphate. The friction behavior was studied through a sliding wear test, with a conventional ball-on-disc configuration. Discs, made of AISI 1006 low carbon steel, uncoated and coated with zinc phosphate, were tested against bearing steel balls. A stearate sodium soap, paraffinic oil and both soap and oil were used as lubricants. The sodium stearate soap was found to have the best seizure resistance. The nature of the interfacial forces between the lubricant and surface has an important role in determining the friction behavior.  相似文献   

7.
This work describes the tribochemical evaluation of vegetable oil based antiwear additive obtained through chemical modification. The Sulfur was incorporated using a chemical reaction of epoxidized vegetable oil and common thiols, resulting in formation of a hydroxy thioether derivative of vegetable oils. The synthesis retains the vegetable oil structure, eliminates poly-unsaturation in the molecule, and adds polar functional groups that significantly improve adsorption on metal surfaces. These additives are obtained by chemical modification of oils originated from natural resources. The tribochemical behavior of sulfur incorporated vegetable oil was studied by measuring friction coefficient using ball-on-disk configuration and wear scar diameter using four-ball configuration. Comparative tests with commercial antiwear additives demonstrate the effectiveness of these derivatives. The derivatives were found useful as agriculturally based antiwear additives for lubricant applications.  相似文献   

8.

This study determines density effect by assessing sintering temperature and graphite content on the dry sliding wear characteristics of steam-treated iron materials using a pin-on-disk wear test. The specimens were prepared from atomized premixed iron base powders and contained 0.1 to 1.0 wt.% carbon compacted at different densities (5.9 g/cc to 6.8 g/cc). The specimens were sintered for 1 h at different sintering temperatures (1090°C to 1130°C), and then subjected to continuous steam treatment at 540°C for 95 min through in situ Powder metallurgy (PM) technique. Steam treatment was proposed to improve the wear performances of the components of PM. Wear tests were conducted using a pin-on-disk-type machine. Load ranged from 20 N to 60 N. Sliding distance and sliding velocity of 312 m and 0.26 m/s, respectively, were adopted for all tests. Scanning electron microscope was used to analyze wear surface. Increased density and graphite content reduced the wear rate of steam-treated materials. Hardness increased with increasing graphite content. Wear mechanism, wear rate map, and wear maps were drawn for the test result data. Wear transition map identified mild, severe, and ultra-severe wear regimes as functions of applied load.

  相似文献   

9.
Today low-friction PVD coatings are used regularly in combustion engines to reduce wear and energy loss due to friction. Three coatings based on transition-metal dichalcogenides and three DLC coatings were tested with respect to tribological behaviour in non-conformal sliding contact, in five conventional and alternative fuels and fuel blending components. The friction and wear proved to vary substantially between the different tested systems. The DLC coatings exhibited extremely good wear properties, but also higher friction. Contrastingly the TMD coatings showed promising friction results, but in their present forms they do not offer sufficient wear resistance in the tested severe contact situation.  相似文献   

10.
The work presents data on friction and wear behaviour of pin-on-disc pairs with superhard diamond-like carbon (DLC) coatings and hard coatings of zirconium nitride (ZrN) and titanium nitride (TiN) in liquid nitrogen with loads of 2.5 and 10 N and sliding speed of 0.06 m/s. It is shown that at cryogenic temperatures the friction coefficients of pairs of two types of DLC coatings obtained by vacuum-arc deposition of filtered high-speed carbon plasma fluxes depend to a great deal on the mechanical properties of the coatings defined by predominant sp2 or sp3 hybridization of valence electrons. A friction coefficient of 0.76 was observed for friction pairs of superhard (90 GPa) DLC coatings having properties similar to those of diamond. For “softer” DLC coatings of 40 GPa and properties similar to those of graphite the friction coefficient shows lower values (0.24–0.48) dependent on normal load and counterbody material. The DLC coatings obtained by the filtered arc technology exhibit good wear resistance and have strong adhesion to the substrate under friction in liquid nitrogen. With a normal load of 10 N under cryogenic temperature a low wear rate (of the order of 7.2×10−4 nm/cycle) was found for superhard DLC coatings. The friction coefficient of pairs with hard ZrN and superhard DLC coatings on steel discs was revealed to be linearly dependent on the counterbody material hardness between 20 and 100 GPa. The hardness of the pin was varied by means of depositing TiN or DLC coatings and also by using high-hardness compounds (boron nitride and synthetic diamond). Proceeding this way can be promising since it offers the possibility of creating low-temperature junctions of required friction properties.  相似文献   

11.
The study of the physical and mechanical properties of multicomponent nitride ((AlSi, Ti)N and (AlSi,Cr)N), carbides ((AlSi, Ti)-C:H and (AlSi,Cr)-C:H) coatings deposited on the surface substrate from 40Kh steel has been carried out to determine the impact of the load and the sliding velocity on the coefficient of friction. The empirical model of the coefficient of friction of the coating-aluminum couples has been proposed in order to find the nature of the friction wear of coatings. A comparative evaluation of the wear resistance of the coatings at normal and elevated temperatures has been conducted.  相似文献   

12.
The paper studies the effect of alumosilicate nanofillers of tubular and lamellar shape on the friction and wear of epoxy composites. It is shown that the influence of concentration and shape of the fillers on the tribological behavior of the composites is due to variations in their viscoelastic properties and shielding of the contact area of the matrix material with the metallic counterbody by the filler particles. The data evidence that at equal concentrations of alumosilicate fillers in the epoxy matrix, the best tribological characteristics are provided in the case of tubular-shaped particles.  相似文献   

13.
The tribological properties of PA-6 and PA-6-based coatings with surface layers gradient-filled with tin, lead, and bismuth nanofilms in a concentration of up to 1.2 wt % are compared. It has been found that differences in the tribological behavior of the composites are due to the adhesion of the filler metals to the counterbody material. It has been shown that the hardness of the friction surface of the composites depends on the susceptibility of the filler metals to strain hardening and explains differences in the values of their wear.  相似文献   

14.
Ti-6Al-4V alloy rubbing against aluminum-bronze 630 was evaluated in this work. High velocity oxygen fuel (HVOF) WC-10%Co-4%Cr thermal sprayed and TiN, CrN and DLC physical vapor deposition (PVD) coatings were applied to increase titanium substrate wear resistance. Pin-on-disk tests were performed with a normal force of 5 N and at a speed of 0.5 m/s, with a quantitative comparison between the five conditions studied. Results showed higher wear resistance for Ti-6Al-4V alloy DLC coated and aluminum-bronze 630 tribological pair and that the presence of graphite carbon structure acting as solid lubricant was the main wear preventing mechanism.  相似文献   

15.
The friction and wear of steel pins coated with filled polyamides and loaded against a rotating cylinder of bearing steel were tested under dry, lubricated, and abrasive contaminated conditions. The filler materials were copper/lead and aluminium/tin powders. The test results show a significant reduction in friction with the Cu/Pb filled polyamides (8 wt.% Cu, 12 wt.% Pb, and 80 wt.% PA6). The Al/Sn filled polyamides (3 wt.% Al, 2 wt.% Sn, and 95 wt.% PA6) showed the best wear resistance, accompanied by an increase in the coefficient of friction.  相似文献   

16.
The use of heat-insulating ceramic coatings on the cylinder walls of diesel engines is currently being considered for certain advanced engine designs. Since a major consideration in such an application is the wear resistance of the coatings, a series of tests has been carried out to determine the sliding wear behavior of several pairs of candidate materials systems, initially at room temperature. The tests were performed using a washer-on-disc specimen configuration and an oscillatory rotation movement to simulate the motion of a piston ring on a cylinder wall. It was determined that each material tested had a different pattern of sliding wear behavior. Impregnation of plasma-sprayed Y2O3-ZrO2 with chromia markedly improved its wear resistance.  相似文献   

17.
《Wear》2007,262(5-6):641-648
The present study concerns the wear behavior of laser composite surfaced Al with SiC and Al + SiC particulates. A thin layer of SiC and Al + SiC (at a ratio of 1:1 and dispersed in alcohol) were pre-deposited (thickness of 100 μm) on an Al substrate and laser irradiated using a high power continuous wave (CW) CO2 laser. Irradiation leads to melting of the Al substrate with a part of the pre-deposited SiC layer, intermixing and followed by rapid solidification to form the composite layer on the surface. Following laser irradiation, a detailed characterization of the composite layer was undertaken in terms of microstructure, composition and phases. Mechanical properties like microhardness and wear resistance were evaluated in detail. The microstructure of the composite layer consists of a dispersion of partially melted SiC particles in grain refined Al matrix. Part of the SiC particles are dissociated into silicon and carbon leading to formation of the Al4C3 phase and free Si redistributed in the Al matrix. The volume fraction of SiC is maximum at the surface and decreases with depth. The microhardness of the surface improves by two to three times as compared to that of the as-received Al. A significant improvement in wear resistance in the composite surfaced Al is observed as compared to the as-received Al. The mechanism of wear for as-received vis-à-vis laser composite surfaced Al has been proposed.  相似文献   

18.
《Wear》2006,260(9-10):1112-1118
A new 16 MnNb steel–PTFE composite (A) containing 60% area proportion of PTFE composite was developed. Another type of common solid lubricant embedded C86300 bronze–PTFE composite (B) containing 35% area proportion of PTFE composite was also selected for a comparative investigation under similar testing conditions. Friction and wear experiments were performed in an oscillating sliding tribotester at an oscillating frequency of 0.13 Hz, contact mean pressures from 15 to 80 MPa and counterface roughness of 0.10 μm Ra. The composites A and B slid against a 38CrMoAlA steel shaft. Results showed that the composite A exhibited low coefficient of dry friction and long wear life as compared to that of the composite B. It was found that the surface of PTFE composite was higher than that of steel backing at the intervals of testing. This was because modulus of the elasticity of PTFE composite was much lower than that of 16 MnNb steel backing; under a same load condition the elastic deformation amount of PTFE composite was much bigger than that of steel backing. Thus, the composite A provided sufficient lubrication during the whole tests.  相似文献   

19.
Friction and wear of ceramics   总被引:8,自引:0,他引:8  
The adhesion, friction, wear and lubricated behaviors of both oxide and non-oxide ceramics are reviewed. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Grit size effects in two- and three-body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号