首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abrasive wear behavior of ductile irons with different dual matrix structures has been investigated. In order to obtain ductile irons with different dual matrix structures an unalloyed ductile iron specimens were austenitized in the two-phase region (α + γ) at various temperature (795 °C and 815 °C) and then rapidly transferred to a salt bath held at the 365 °C for austempering for 30, 90 and 120 min. Some specimens were quenched from same intercritical austenitizing temperatures and tempered at 550 °C for 60 and 300 min. Some specimens were also conventionally austempered and/or quenched from 900 °C for comparison. Experimental results showed that, the tensile strength increased and ductility decreased with increasing martensite volume fraction in the specimen with martensite dual matrix structure. By increasing the tempering time, the yield and UTS decreased and ductility increased. In addition, the specimens with ausferrite dual matrix structures exhibited much greater ductility than conventionally austempered ones. The tensile strength increased while ductility decreased with increasing ausferrite volume fraction. Furthermore in all austenitized specimens, the abrasive weight loss of austempered specimens (A series) was lower than those of quenched specimens (Q series) irrespective of all loads due to increased AFVFs and total elongation. It was shown that wear loss of both tested materials in abrasive wear was proportional to the applied load. However, there was a decreasing trend in the weight loss of the A795 with dual matrix structure austempered for 30 and 90 min with increasing load. The reason was because of the fact that the specimen surface was work hardened with cutting efficiency of the abrasive reduced through clogging, and attrition jointly leading to less weight loss. Moreover, increasing the austempering time caused more ductile ausferritic structure to displace hard martensite. In all austempered samples, the abrasive weight loss increased with increasing the austempering time. As for the case of Q samples, the abrasive weight loss increased more or less linearly with load since an increase in the applied load might increase the contact stress. Among the Q samples, the highest weight loss was obtained for the Q795-300, Q815-300 sample because of lower martensite volume fraction, but the lowest weight loss was observed for the Q900 sample due to the highest martensite volume fraction. For Q900 samples, the amount of fracture of the abrasives was found to be increase with the harder specimen, and it may have contributed somewhat to the increased wear.Furthermore, microchips were dominant wear mechanism by cutting mode for higher ductile materials while micro-ploughing was predominant wear for harder materials, but wear also occurred by combinations of ploughing and embedding particles into the surface for Q samples. Cross-section examination by SEM through the wear surfaces revealed that a more smoother surface was observed for the A795 sample than that of the Q795 sample. However, a more rougher surface was observed for the A900-120 sample than that of the Q900 sample.  相似文献   

2.
《Wear》2007,262(7-8):845-849
In this study, sliding wear behavior of newly developed Fe-base Co-free hardfacing alloy (Fe–Cr–C–Si) was investigated and compared to that of Stellite 6 and Fe-base NOREM 02 in the temperatures ranging from 300 to 575 K under a contact stress of 103 MPa (15 ksi) in pressurized water. The weight loss of Fe–Cr–C–Si was equivalent to that of Stellite 6 over all temperatures range in 100-cycle wear test. The weight loss of Fe–Cr–C–Si 1000-cycle wear test increased almost linearly with increasing temperature up to 575 K. The weight loss of NOREM 02 was nearly equivalent to that of Stellite 6 below 475 K, however, galling occurred above 475 K in 100-cycle wear test. It was also found that the lubrication effect of pressurized water on the sliding wear behavior of the alloys was negligible under the present test conditions.  相似文献   

3.
《Wear》2007,262(3-4):350-361
In this work, the tribological properties of deproteinised natural rubber (DPNR) were examined and compared with synthetic cis-1,4-polyisoprene rubber (IR), namely Natsyn 2200. The effect of adding carbon black (CB) (0, 25 and 50 phr) to both DPNR and IR on the friction and wear characteristics was investigated. Dry abrasion tests were carried out using pin-on-cylinder tribometer with abrasive paper (Diamond 50) under different operating test conditions such as applied normal load (5–35 N), sliding speed (0.3–1.5 m/s) and sliding distance (90–450 m).Experimental results showed that the addition of CB has significantly affected the wear and friction characteristics of both DPNR and IR, i.e. it reduces the abrasion weight loss by more than 70% compared to unfilled rubber, depending on the test conditions and the concentration of CB. The friction coefficient of DPNR was decreased by about 12.5% upon the addition of 50 phr CB, compared to unfilled DPNR. Meanwhile, adding (25–50 phr) CB to IR drastically deteriorates the friction coefficient, i.e. an increase in the friction by about 200% at 25 phr CB and 300% at 50 phr CB compared to unfilled IR.Finally, scanning electron microscopy (SEM) technique is employed to observe the abrasion pattern of rubber in order to correlate the experimental test results to the wear mechanisms.  相似文献   

4.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

5.
《Wear》2007,262(3-4):292-300
Several wear tests were carried out at different pressures and temperatures on Al-8090 and Al-8090 + 15 vol.% SiCp. Worn specimens and debris were also examined using SEM and EDX techniques to identify the dominant wear mechanisms. Wear rate increases about two orders of magnitude when temperature is above a critical one. The transition from mild to severe wear is dependent on nominal pressure. The composite transition temperature is higher than that of the unreinforced alloy. Within the mild wear regime, the wear rates for both materials exhibit a minimum over 100 °C and are higher for the composite material than for the Al-8090 below the transition temperature. It has been also observed that the presence of mechanically mixed layers (MML) on the wear surface with varying morphology and thickness influenced the wear rate. The morphology and composition of the wear debris also change with the wear mechanism.  相似文献   

6.
Y.S. Mao  L. Wang  K.M. Chen  S.Q. Wang  X.H. Cui 《Wear》2013,297(1-2):1032-1039
Dry sliding wear tests were performed for Ti–6Al–4V alloy under a load of 50–250 N at 25–500 °C on a pin-on-disk elevated temperature tester. Worn surfaces and subsurfaces were thoroughly investigated for the morphology, composition and structure of tribo-layers. Ti–6Al–4V alloy could not be considered to possess poor wear resistance at all times, and presented a substantially higher wear resistance at 400–500 °C than at 25–200 °C. The tribo-layer, a mechanical mixing layer, was noticed to exist on worn surfaces under various conditions. High wear rate at 25–200 °C was ascribed to no protective tribo-layer containing no or trace tribo-oxides. As more oxides appeared in the tribo-layers, they presented an obviously protective role due to their high hardness, thus giving a reasonable explanation for high wear resistance of Ti–6Al–4V alloy at 400–500 °C.  相似文献   

7.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

8.
H11 steel discs were tested by considering sliding/rolling friction under dry and lubricated conditions. The H11 discs were plasma nitrided at 500 °C and 550 °C for 9 h. Wear tests were conducted at different slip ratios of 1.79%, 10.53% and 22.22%. The test loads were 100 N, 150 N and 200 N. It was determined that plasma-nitrided H11 discs had a surface hardness of 1200–1400 HV0.1. Plasma nitriding produced wear performance much higher than those of the un-nitrided but hardened samples. The wear mechanism of the plasma-nitrided discs was a mixture of adhesive wear, abrasive wear and plastic yielding.  相似文献   

9.
《Wear》2006,260(1-2):123-127
In this research, the wear of electroless Ni–P and Ni–P–B4C composite coatings was reviewed. Auto catalytic reduction of Ni in nickel sulfate and sodium hypophosphate bath including suspended B4C particles with different concentration was used to create composite coatings with 12, 18, 25 and 33 vol.% of B4C particles. Coatings 35 μm thick were heat treated at 400 °C for one hour in an argon atmosphere and the wear resistance and friction coefficient of heat-treated samples were determined by block-on-ring tests. All wear tests were carried out at 24 °C, 35% moisture, 0.164 m/s sliding speed and about 1000 m sliding distance. Graphs show that an electroless Ni–P–B4C composite coating with 25 vol.% of B4C had the best wear resistance against a CK45 steel counterface.  相似文献   

10.
In this paper, wear characteristics of magnesium alloy, AZ31B, and its nano-composites, AZ31B/nano-Al2O3, processed by the disintegrated melt deposition technique are investigated. The experiments were carried out using a pin-on-disk configuration against a steel disk counterface under different sliding speeds of 1, 3, 5, 7 and 10 m/s for 10 N normal load, and 1, 3 and 5 m/s for 30 N normal load. The worn samples and wear debris were then examined under a field emission scanning electron microscopy equipped with an energy dispersive spectrometer to reveal its wear features. The wear test results show that the wear rates of the composites are gradually reduced over the sliding speed range for both normal loads. The composite wear rates are higher than that of the alloy at low speeds and lower when sliding speed further increased. The coefficient of friction results of both the alloy and composites are in the range of 0.25–0.45 and reaches minimums at 5 m/s under 10 N and 3 m/s under 30 N load. Microstructural characterization results established different dominant mechanisms at different sliding speeds, namely, abrasion, delamination, oxidation, adhesion and thermal softening and melting. An experimental wear map was then constructed.  相似文献   

11.
《Wear》2002,252(11-12):870-879
Evolution of friction and wear of 42CrAlMo7 steels with different nitriding processes was investigated during boundary-lubricated rolling–sliding tests. The wear behaviour of nitrided steel with a thin compound layer (produced by plasma nitriding and by gas nitriding followed by oxidation) was characterised by the early removal of the compound layer, and the wear resistance was thus, given by the underlying diffusion layer. In the case of the material with a thick compound layer (produced by gas nitriding) wear was restricted to the compound layer. In this material, at low applied load (300 N, i.e. 485 MPa of Hertzian pressure, in this work), after the removal of the external porous layer wear tended to be negligible. At high applied load (1000 N, 890 MPa), on the other hand, the wear rate became higher than that of the diffusion layer. The friction behaviour was followed by determining the λ-factor evolution during each test. For a given λ-factor, the friction coefficients at 300 N were lower than at 1000 N.  相似文献   

12.
《Wear》2006,260(1-2):1-9
In the present work, we report the processing and properties of WC–6 wt.% ZrO2 composites, densified using the pressureless sintering route. The densification of the WC–ZrO2 composites was carried out in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y-stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. An important observation is that a transition in friction and wear with load is noted. The dominant mechanisms of material removal appear to be tribochemical wear and spalling of tribolayer.  相似文献   

13.
Hierarchical porous PEEK self-lubricating composites were prepared by mold-leaching and vacuum melting process under high temperature. The tribological behaviors were investigated for the porous PEEK composite and the porous composite after incorporating micro-porogen (NaCl) and mesoporous titanium oxide whiskers. If only micro-porogen was incorporated, the lowest steady state specific wear rate was observed for PEEK composites filled with 30% NaCl. Based on this porous PEEK composite, the effects of mesoporous titanium oxide whiskers and non-perforated titanium oxide whiskers on the friction and wear properties of PEEK composites were studied. Results showed that nano-micro porous PEEK composites with 30 wt% micro-porogen and 5 wt% mesoporous titanium oxide whiskers reached the lowest friction coefficient and specific wear rate, which were recorded as 0.0194 and 2.135×10–16 m3/Nm under the load of 200 N. Compared with 15 wt% carbon fiber-reinforced PEEK composite which is widely used in industry, the wear resistance of the designed hierarchical porous PEEK composite increased by 41 times, showing outstanding wear resistance.  相似文献   

14.
The effects of two different textures (a 3D negative fingerprint texture and a honeycomb texture) on the tribological performance of SU-8 polymer surface have been investigated with a ball-on-disc tribometer. Friction and wear behaviors of the textured surfaces are conducted against a 4 mm diameter silicon nitride (Si3N4) ball counterface. The coefficient of friction for the negative fingerprint textured surface (μ=∼0.08) is much lower than that of the untextured surface (∼0.2) and the honeycomb textured surface (∼0.41) under a normal load of 100 mN and a rotational speed of 2 rpm. The coefficients of friction of the textured surfaces decrease with increasing normal loads between 100 mN and 300 mN. Above the normal load of 300 mN, the coefficient of friction of the negative fingerprint textured surface increases due to the occurrence of plastic deformation. The honeycomb textured surface has shown the highest coefficient of friction. The wear durability tests are also conducted at a normal load of 100 mN and a rotational speed of 500 rpm on the untextured/textured surfaces on SU-8 in the presence of an overcoat of a nano-lubricant, perfluoropolyether(PFPE). Six samples i.e. the untextured surface (Si/SU-8 and Si/SU-8/PFPE), the 3D negative fingerprint textured surface (Si/SU-8/FP and Si/SU-8/FP/PFPE) and the honeycomb textured surface (Si/SU-8/HC and Si/SU-8/HC/PFPE), each with and without PFPE nano-lubricant, have been investigated for their tribological behaviours. The negative fingerprint pattern on SU-8 with PFPE coating has shown the highest wear life of 60,000 cycles under a normal load of 100 mN. The reasons for excellent tribological performance of 3D fingerprinted SU-8 surface are analyzed using the Hertzian contact area calculation.  相似文献   

15.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

16.
Dry sliding tests were performed for 45, 4Cr5MoSiV1 steels and 3Cr3Mo2V cast steel at 200 and 400 °C. The wears at 200 and 400 °C are of oxidative wear characteristic due to tribo-oxides formed on worn surfaces. However, the wear at 200 °C presents different wear behaviors and characteristics from the one at 400 °C. The wear at 200 °C is a typical oxidative mild wear, but the wear at 400 °C is beyond oxidative mild wear, here called oxidative wear. The characteristics of oxidative mild wear and oxidative wear were clarified.  相似文献   

17.
This article follows a previous study on friction and wear of 25CrMo4 steel [N. Khanafi-Benghalem, K. Loucif, E. Felder, F. Delamare, Influence de la température sur les mécanismes de frottement et d’usure des aciers X12NiCrMoSi25-20 et 25CrMo4 glissant sur du carbure de tungstène, Matériaux et techniques 93 (2005) 347–362]. The aim of our work is to study in more details the process of plastic deformation and the wear rate of this steel in lubricated sliding against cemented tungsten carbide, process observed in the previous work. The considered parameters are the temperature T (from 20 to 200 °C), the normal force P (from 500 to 1500 N), the steel structure (normalised HV 220 and quenched/tempered HV 480 states) and the sliding velocity v (from 0.05 to 0.3 m/s). We measured the friction coefficient and the sample total volume loss. A displacement sensor follows the volume loss evolution during the test; this follow-up is approximate because of the sample plastic flow which leads to the formation of peripheral burrs. All the tests conditions generate a significant plastic deformation of the sample steel, even in the quenched/tempered state: it produces a marked increase of the surface hardness, the work hardened layer being much finer for the quenched/tempered state (15 μm) than for the normalised state (40 μm at 20 °C). For temperatures T  100 °C in normalised state, the wear follows the Archard's law with an increasing rate with temperature. For T  120 °C, the wear rate decreases during the test, the global volume of wear being a decreasing function of T. For the quenched/tempered state, the wear rate decreases with the increase of the normal force, this decrease is less than 30% of the normalised state value. The material heating during the wear tests is well correlated with the friction dissipated power, but remains small, except in extreme cases (v maximum, great friction at high temperatures). These results suggest the existence of two wear mechanisms: abrasion by sample debris and burrs emission by plastic flow. The abrasion is probably the dominating mechanism for the tests carried out at the lowest temperatures. The plastic flow becomes a significant component at the highest temperatures. Using a contact model, we discuss to what extent the influence of the temperature and the strain rate on the steel hardness and ductility could explain the temperature and the sliding velocity effect on wear. Other phenomena are probably present: the influence of the steel microstructure and the lubricant on the size and/or the number of particles responsible for abrasion.  相似文献   

18.
《Wear》2007,262(5-6):641-648
The present study concerns the wear behavior of laser composite surfaced Al with SiC and Al + SiC particulates. A thin layer of SiC and Al + SiC (at a ratio of 1:1 and dispersed in alcohol) were pre-deposited (thickness of 100 μm) on an Al substrate and laser irradiated using a high power continuous wave (CW) CO2 laser. Irradiation leads to melting of the Al substrate with a part of the pre-deposited SiC layer, intermixing and followed by rapid solidification to form the composite layer on the surface. Following laser irradiation, a detailed characterization of the composite layer was undertaken in terms of microstructure, composition and phases. Mechanical properties like microhardness and wear resistance were evaluated in detail. The microstructure of the composite layer consists of a dispersion of partially melted SiC particles in grain refined Al matrix. Part of the SiC particles are dissociated into silicon and carbon leading to formation of the Al4C3 phase and free Si redistributed in the Al matrix. The volume fraction of SiC is maximum at the surface and decreases with depth. The microhardness of the surface improves by two to three times as compared to that of the as-received Al. A significant improvement in wear resistance in the composite surfaced Al is observed as compared to the as-received Al. The mechanism of wear for as-received vis-à-vis laser composite surfaced Al has been proposed.  相似文献   

19.
The dry rolling/sliding wear behaviour of Si alloyed carbide free bainitic steel austempered at different temperatures and sliding distances has been evaluated. 60SiCr7 spring steel samples were austempered in a salt bath maintained at 250, 300 and 350 °C respectively for 1 h. Rolling with 5% sliding wear tests were performed using self mated discs for three different test cycles, namely 6000, 18,000 and 30,000 cycles. The aim was to study the wear performance of the 60SiCr7 steel with a carbide-free microstructure containing different amounts of retained austenite. An in-depth microstructural characterization has been carried out before and after the wear tests in order to link the wear behaviour to the microstructure of each sample. The wear resistance has been expressed by means of the specific wear calculated from the mass loss after the tests. The worn surfaces were analysed by scanning electron microscopy and X-ray diffraction. Microhardness profiles were also obtained in order to analyse strain-hardening effects beneath the contact surfaces. The results indicate that the material with highest hardness—the one austempered at 250 °C—exhibited the lowest wear rate in every case. It was also observed that the hardness increment and thickness of the hardened layer increases with increasing the austempering temperature and number of test cycles. Finally, the results appear to indicate that the initial roughness of the samples has no major effect in the wear rate of the samples above 2500 cycles. The higher wear performance of the sample austempered at 250 °C has been attributed to its superior mechanical properties provided by its finer microstructure. It has been evidenced that all samples undergo the TRIP phenomenon since, after wear; no retained austenite could be detected by XRD.  相似文献   

20.
A block-on-slip ring-type wear tester was used to investigate the tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy under 2 to 6 N applied load and 0 to 20 A electrical current. The sliding speed was maintained at 25 km/h. The wear loss of copper-impregnated metallized carbon increased with greater electrical current. Under a certain applied load, the wear loss with electrical current was minimized. The tribo-layer had an apparent effect on the friction coefficient. The wear mechanisms were complex, consisting of adhesive wear, abrasive wear and arc erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号