首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
本工作采用化学共沉淀方法合成石榴石型Li_(7)La_(3)Zr_(2)O_(12)(LLZO)固态电解质,借助扫描电子显微镜(SEM)、X射线衍射(XRD)、电化学阻抗谱分析等系统研究了制备过程中烧结工艺、球磨、Al元素掺杂及压片压力等参数对样品颗粒尺寸、立方相稳定、致密化行为以及最终固态电解质锂离子电导率的影响。研究结果表明,热压烧结或湿法球磨均有利于提高固态电解质片的致密度,但样品的最终离子电导率受晶相结构影响表现不佳,相比而言干法球磨、常压烧结能够很好地合成立方相c-LLZO且结构中的杂相随温度升高而减少。为了解决随温度升高产生的颗粒粗化问题,由两步烧结代替一步烧结获得小粒径、高致密度固态电解质,同时增强了Al掺杂离子的稳定结构作用。最终,干法球磨、经750 MPa冷压成型、1100℃×6 h^-1200℃×20 h两步烧结获得的Al掺杂LLZO电解质离子电导率最高,达1.52×10^(-4)S/cm,这是其稳定立方结构和高致密度形貌共同作用的结果。本研究有助于推动陶瓷材料的制备与应用,为固态电池技术研发提供指导。  相似文献   

2.
与目前采用有机电解液的商业化锂离子电池相比,引入固体电解质的固态锂电池在同时提升电池能量密度和安全性方面具有巨大潜力,成为开发下一代锂电池的重点。在众多固体电解质材料中,石榴石型的锂镧锆氧(Li7La3Zr2O12,LLZO)凭借高锂离子电导率、优异的对锂稳定性和宽电化学窗口等优点受到广泛关注。然而,LLZO的引入带来诸多界面之间的突出问题,例如固固界面的物理接触、应力应变、电荷重新排布以及电化学稳定性等。这些问题不仅是影响电池性能的关键因素,而且带来了很多新的物理化学现象需要深入研究。因此,本文从LLZO基固体电解质与电极之间的外部界面和固体电解质及复合电极内部界面两个角度入手,依据本课题组多年的研究积累,结合领域内最新研究动态,详细讨论了:(1)LLZO基固体电解质粉体材料表面碳酸锂(Li2CO3)的形成原因、对电化学性能的影响以及克服这一问题的手段;(2)LLZO基固体电解质层内部界面调控对锂离子电导率及电池电化学性能的影响;(3)LLZO/Li界面...  相似文献   

3.
徐琛 《中外能源》2023,(9):18-24
固态锂电池因质量轻、安全性高、能量密度大、循环寿命长等优点而备受关注,具有广阔的应用前景。其工作原理与传统锂电池基本相同,最大的区别在于电解质不同,固态锂电池采用固态电解质。作为全固态锂离子电池的核心部件,固态电解质的研发是固态锂电池发展的关键因素。目前单一的固态电解质存在着离子电导率低、锂沉积产生锂枝晶而刺穿隔膜、界面不稳定等问题,无法很好地满足固态锂电池的性能要求。而由无机填料和聚合物固态电解质复合而成的复合固态电解质,兼具多种固态电解质的优点,具有稳定的物理和电化学特性,近年来的研究使得离子电导率和电化学稳定性得以提升,综合性能超越了单一的固态电解质。通过精确控制复合固态电解质的组分和结构,可以实现对其各方面物理化学性质的调控。未来的重点研究方向是调整改进复合固态电解质中各种材料的比例,或者探索具有更优异性能的电解质及其辅助材料,开发综合性能优异的新型固态电解质材料。  相似文献   

4.
固态聚合物电解质(solid polymerelectrolytes,SPEs)具有不易泄漏、易加工、抑制锂枝晶生长等优点,能提高固态金属锂电池(solid-state lithiummetalbatteries,SSLMBs)的循环寿命和安全性。导电锂盐作为SPEs的必要组分之一,不仅能够为其离子输运提供锂离子源,而且能够在电极表面发生化学或电化学反应,参与电极/SPE界面膜的构建。因此,导电锂盐的分子结构对于调控SPEs的基础物理和电化学性质及其与电极材料的界面性能有着重要的影响。结合本团队在SPEs导电锂盐领域的相关研究工作,本文主要介绍全氟代和部分氟代磺酰亚胺锂盐作为SPEs导电盐的研究进展,并探讨了SPEs导电锂盐的未来发展方向。  相似文献   

5.
与目前采用有机电解液的商业化锂离子电池相比,引入固体电解质的固态锂电池在同时提升电池能量密度和安全性方面具有巨大潜力,成为开发下一代锂电池的重点。在众多固体电解质材料中,石榴石型的锂镧锆氧(Li_(7)La_(3)Zr_(2)O_(12),LLZO)凭借高锂离子电导率、优异的对锂稳定性和宽电化学窗口等优点受到广泛关注。然而,LLZO的引入带来诸多界面之间的突出问题,例如固固界面的物理接触、应力应变、电荷重新排布以及电化学稳定性等。这些问题不仅是影响电池性能的关键因素,而且带来了很多新的物理化学现象需要深入研究。因此,本文从LLZO基固体电解质与电极之间的外部界面和固体电解质及复合电极内部界面两个角度入手,依据本课题组多年的研究积累,结合领域内最新研究动态,详细讨论了:(1)LLZO基固体电解质粉体材料表面碳酸锂(Li_(2)CO_(3))的形成原因、对电化学性能的影响以及克服这一问题的手段;(2)LLZO基固体电解质层内部界面调控对锂离子电导率及电池电化学性能的影响;(3)LLZO/Li界面特性及Li在LLZO基陶瓷电解质中贯穿生长,深入探讨了诱导Li析出和生长的电场、电荷、应力应变等作用机制;(4)复合正极内部界面问题及其与电解质层外部接触界面的一体化构筑方法。希望通过本文对LLZO固态锂电池界面问题的关键科学和技术的分析总结,为构筑高导通高稳定界面,推动高性能固态锂电池发展提供思路。  相似文献   

6.
在聚环氧乙烷(PEO)基固体聚合物电解质中加入无机填料,是一种低成本、有效改善其力学和电化学性能的方法。为了更有效地改善PEO基固态电解质的电化学性能,本工作采用流延法制备了纳米沸石咪唑骨架材料(ZIF-8)与聚氧化乙烯(PEO)复合的固态电解质。通过扫描电子显微镜(SEM)、X射线衍射(XRD)等物理表征和电化学阻抗谱(EIS)、伏安线性扫描(LSV)、充放电循环等电化学测试手段,证明了加入20%ZIF-8纳米粒子的PEO基复合固态电解质CPE20具有最小的体电阻、较宽的电化学稳定窗口与最低的活化能(8.4×10^(-3)eV);20℃时,其电导率达到了4.9×10^(-5)S/cm(比纯PEO高一个数量级);70℃时,其电导率为1.08×10^(-3)S/cm(与液态电解液相当);CPE20的锂离子迁移数提高至0.46,而纯PEO基固态电解质为0.36;采用CPE20制备的LiFePO_(4)||Li电池在室温下具有良好的容量和循环性能,而且容量保持率超过96%。加入适量的惰性填料ZIF-8时,可以有效降低聚合物的结晶度,增加聚合物的非晶区,促进锂盐的溶解,提高锂离子的迁移率,使复合固态电解质具有更加优异的电化学性能。因此添加ZIF-8的PEO基固相聚合物在固态金属锂电池中具有广阔的应用前景。  相似文献   

7.
聚氧化乙烯(PEO)基固态电解质由于高的柔韧性、优异的加工性以及良好的界面兼容性等在全固态锂电池中极具应用前景,但其较低的室温离子电导率和较窄的电化学窗口限制了其高效应用。本工作采用溶液浇铸法将含有极性官能团的冠醚(15-C-5)分子分散在PEO/双三氟甲基磺酰亚胺锂(LiTFSI)基质中制备PEO/15-C-5聚合物固态电解质。重点探究冠醚含量对固态电解质中Li+传递的影响,同时对聚合固态电解质的形貌、力学性能、电化学性能进行系统研究。结果表明:10%15-C-5在PEO中分散性较好,可有效降低PEO的结晶度,进而提升PEO链段运动性,使其抗拉强度达1.83 MPa。15-C-5与锂离子间强的络合作用促进锂盐解离,同时对阴离子产生静电排斥,从而增强离子电导率并提高锂离子迁移数,30℃下离子电导率达到1.00×10^(-5)S/cm,60℃下锂离子迁移数达到0.42,分别是PEO电解质的4.5和1.9倍。另外冠醚与阴离子形成的静电排斥中心易捕获锂离子形成较为稳定的悬停位点,降低了PEO链段形成的O-Li络合活性位点促进C-O-C结构分解的可能性,从而提高PEO电解质的分解电压(从4.29 V到5.42 V)。与镍钴锰三元正极匹配的全固态锂电池展现出稳定的长循环性能,其在60℃、0.5 C的条件下初始放电比容量达到159 mAh/g,经100圈循环之后容量保持率达到89%。与磷酸铁锂正极匹配组装的全固态锂电池同样表现出优异的性能。  相似文献   

8.
本工作采用(氟磺酰)(三氟甲基磺酰)亚胺锂{Li[(FSO2)(CF3SO2)N],LiFTFSI}和聚氧乙烯(PEO)分别作为导电锂盐和聚合物主链,通过简单的溶液浇铸法制备了新型固态聚合物电解质(SPEs),并采取示差扫描量热(DSC)、热重(TGA)、线性扫描伏安(LSV)、交流阻抗(EIS)和恒电位直流(DC)极化等方法研究了LiFTFSI/PEO (EO/Li+摩尔比为16)电解质的理化性质和电化学性质。结果表明,LiFTFSI/PEO电解质具有较高的室温离子电导率(σ ≈10−5 S/cm),较高的氧化电位(4.63 V vs. Li/Li+),并且耐热温度高达256 ℃。锂硫电池测试结果表明,该类SPEs展现出相对高的首周放电比容量(881 mA•h/g),有效地抑制了多硫离子的“穿梭效应”,表现出良好的电池循环性能。  相似文献   

9.
利用g-C_(3)N_(4)表面丰富的官能团进行锂化,得到锂化氮化碳(L-g-C_(3)N_(4))材料,并以双三氟甲基磺酰亚胺锂(LiTFSI)为锂盐,聚环氧乙烯(PEO)为聚合物基体,采用流延-热压法制备Li^(+)-g-C_(3)N_(4)复合固态电解质。借助透射电子显微镜(TEM)、X射线衍射仪(XRD)、红外光谱仪(FT-IR)、差示扫描量热法(DSC)、线性循环伏安(LSV)、直流极化曲线、交流阻抗谱以及充放电测试等手段对复合固态电解质进行表征和测试。对比分析相同质量分数g-C_(3)N_(4)复合固态电解质与L-g-C_(3)N_(4)复合固态电解质的电化学性能,同时对不同L-g-C_(3)N_(4)含量的复合固态电解质的电化学性能进行研究。结果表明,添加质量分数为10%L-g-C_(3)N_(4)的复合固态电解质在60℃时的离子电导率为3.95×10^(-4) S/cm,锂离子迁移数为0.639,电化学窗口为4.5 V以上。以复合固态电解质组装Li/LiFePO_(4)全固态电池,在60℃以0.5 C充放电,电池的首次放电比容量为163.76 mAh/g,循环80次后容量仍有160.10 mAh/g,容量保持率为97.8%。  相似文献   

10.
采用固态电解质和金属锂的全固态锂电池被认为是解决传统使用液态电解质的锂离子电池安全性差和能量密度低的终极方案。近年来,固态硫化物电解质在离子电导率和空气稳定性研究等方面取得了较大进展,但固态硫化物电池体系还有一些问题亟需解决,最为重要的就是固态硫化物电解质与锂金属负极的界面稳定性问题。因此,构建稳定的固态电解质/锂金属负极界面是实现高性能全固态锂电池的关键。该文针对目前基于硫化物电解质的全固态锂电池所面临的机遇和挑战,总结了固态硫化物电解质/锂金属负极界面所面临的问题和设计策略。  相似文献   

11.
To explore their possible application as solid electrolytes in Solid Oxide Fuel Cells (SOFC), this contribution presents the synthesis, characterization and electrical properties of Ln4Zr3O12 (Ln = Y, Ho, Er and Yb) zirconates. All samples were obtained by mechanical milling and their electrical properties were analyzed as a function of frequency and temperature, by using impedance spectroscopy. Our results show that defective fluorite-type zirconates might be successfully obtained after milling stoichiometric mixtures of the corresponding oxides, for 30–40 h in a planetary mill. Such structural form persists even after firing the as-prepared Y, Ho and Er zirconates, at very high temperatures (1500 °C); whereas, Yb4Zr3O12 shows a transition to a rhombohedral δ-phase on firing. Ionic conductivity (σ) values obtained for all compositions at 700 °C (including fluorites and δ-phase), are comparable to those reported for similar ionic conductors, and within the 10−3.82 to 10−6.13 S cm−1 range. Higher σ values were obtained for those zirconates preserving the disordered fluorite-type structure after firing.  相似文献   

12.
For the solid‐state reaction synthesis of Al containing Li7La3Zr2O12, various precursors have been used. Since there is a lack of general agreement for choosing precursors, a quantitative approach to build a consensus is required. In this study, a thermodynamic point of view for selecting the precursors in the field of Li7La3Zr2O12 synthesis was covered according to the Gibbs free energy and enthalpy change of precursors' decomposition reactions. In terms of Gibbs free energy change calculations, LiOH, La(OH)3, and Al(OH)3 were favorable whereas, LiOH, La2O3, and Al(OH)3 were the preferred precursors for the enthalpy change calculations. Pellets prepared by using the favored precursors calculated from enthalpy change showed improved densification, higher ionic conductivity (2.11 × 10?4 S/cm), and lower activation energy (0.23 eV) compared with Gibbs free energy change. As a thermodynamically favored aluminum precursor, Al(OH)3 was discussed in the present study and hinders the ionic conductivity in comparison to Al2O3.  相似文献   

13.
The electrochemical properties of bi-layered electrolytes GDC(Gd0.1Ce0.9O1.95)/YSZ(Y0.16Zr0.84O1.92), ESB(Er0.4Bi1.6O3)/GDC and ESB/YSZ with different layer thickness fractions in the temperature range from 400 to 800 °C have been investigated by simulating calculations based on a charge transport continuity equation and the characteristic conductivity parameters of YSZ, GDC and ESB. It has been found that the model cells with ESB/GDC and ESB/YSZ bi-layered electrolytes can render a higher maximum power density that increases with the ESB layer thickness than those with GDC/YSZ bi-layered electrolytes in the studied temperature range. While the oxygen partial pressure at the interface of ESB/GDC is much lower than that of ESB/YSZ electrolyte with the same ESB thickness fraction, a higher interfacial oxygen partial pressure than the critical decomposition value of Bi2O3 can be achieved in the ESB/YSZ electrolytes even with small YSZ thickness fractions. This result strongly suggests that the ESB/YSZ, instead of ESB/GDC, would be a thermodynamic stable bi-layered electrolyte with high output power density for potential applications in the intermediate to low temperature SOFCs.  相似文献   

14.
We report the effect of Y substitution for Nb on Li ion conductivity in the well-known garnet-type Li5La3Nb2O12. Garnet-type Li5La3Nb2−xYxO12−δ (0 ≤ x ≤ 1) was prepared by ceramic method using the high purity metal oxides and salts. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), 7Li nuclear magnetic resonance (Li NMR) and AC impedance spectroscopy were employed for characterization. PXRD showed formation of single-phase cubic garnet-like structure for x up to 0.25 and above x = 0.25 showed impurity in addition to the garnet-type phases. The cubic lattice constant increases with increasing Y content up to x = 0.25 in Li5La3Nb2xYxO12−δ and is consistent with expected ionic radius trend. 7Li MAS NMR showed single peak, which could be attributed to fast migration of ions between various sites in the garnet structure, close to chemical shift 0 ppm with respect to solid LiCl and which confirmed that Li ions are distributed at an average octahedral coordination in Li5La3Nb2xYxO12δ. Y-doped compounds showed comparable electrical conductivity to that of the parent compound Li5La3Nb2O12. The x = 0.1 member of Li5La3Nb2xYxO12δ showed total (bulk + grain-boundary) ionic conductivity of 1.44 × 10−5 Scm−1 at 23 °C in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号