首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium chloride (CaCl2) can react with calcium hydroxide (Ca(OH)2) to form calcium oxychloride which can reduce flexural strength and damage concrete. This paper aims to characterize the reduction in flexural strength of cement pastes exposed to CaCl2 solutions using the ball-on-three-balls test. The amounts of Ca(OH)2 and calcium oxychloride in the cement paste are measured using thermogravimetric analysis and low-temperature differential scanning calorimetry, respectively. The volume change that occurs as a result of the reactions between the cement paste and CaCl2 is also measured. The reduction in flexural strength increases as the concentration of the CaCl2 solution increases and the exposure temperature decreases. The flexural strength reduction can be mitigated by increasing the amount of supplementary cementitious materials (fly ash) in the cement pastes. Lowering the water-cementitious materials ratio also reduces the flexural strength reduction. The flexural strength reduction is correlated with the amount of calcium oxychloride and the volume change in the cement pastes exposed to the CaCl2 solution. While the flexural strength reduction is believed to be primarily due to the formation of calcium oxychloride, the formation of Friedel's salt and Kuzel's salt also contributes to the flexural strength reduction.  相似文献   

2.
The phase equilibria in the pseudoternary system Ag2Se-PbSe-Bi2Se3 have been studied using differential thermal analysis, x-ray diffraction, and microhardness measurements. The results have been used to construct the T-x phase diagram along the AgBiSe2-PbSe join and the 900-K section of the ternary phase diagram. The AgBiSe2-PbSe system contains a continuous series of cubic solid solutions with the NaCl structure. Their lattice parameter is an almost linear function of composition (a = 5.822–6.125 Å). The formation of the solid solutions stabilizes the high-temperature phase of AgBiSe2: PbSe dissolution in this compound markedly reduces its polymorphic transformation temperature (590 K), down to room temperature at ? 10 mol % PbSe. In the Ag2Se-PbSe-Bi2Se3 system, the γ-phase exists in a broad region around the AgBiSe2-PbSe pseudobinary join.  相似文献   

3.
New solid solutions, Bi2?x?y Tm x Nb y O3+δ, with tetragonal and cubic structures have been synthesized in the Bi2O3-Tm2O3-Nb2O5 system, and their electrical conductivity has been measured at temperatures from 670 to 1020 K. The 1020-K conductivity of the tetragonal solid solution Bi1.8Tm0.15Nb0.05O3+δ is comparable to that of Bi1.75Tm0.25O3, the best conductor in the Bi2O3-Tm2O3 system.  相似文献   

4.
We have measured the thermal conductivity of Bi2Te3-Sb2Te3-Gd2Te3 solid solutions at temperatures from ~80 to 300 K and have determined the electronic and lattice components of their total thermal conductivity and the contributions of Sb2Te3 and Gd2Te3 to their thermal resistance. The results indicate that heat in these materials is transported largely by phonons and that three-phonon processes play a key role in determining the lattice thermal conductivity of the solid solutions.  相似文献   

5.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

6.
The authors carried out failure analysis of bent and branched copper-nickel alloy pipelines that had failed in marine environments. These failures were almost always dominated by a brittle stress-corrosion cracking (SCC) mode and could often be attributed to the presence of ammoniacal byproducts in the operating environment. Attempts were made to reproduce the marine-type field failures in the laboratory by testing a Cu-5.37%Ni alloy, similar to the material used in failed pipelines. The tests were performed under slow strain rate test (SSRT) conditions in aqueous ammonia and ammoniacal seawater. Results revealed that the ammonia-induced brittle SCC failures were predominant and reduced the load-bearing capacity of the alloy. The real-life failures are not simple SSRT-type failures. The operating conditions, in addition to the induced residual stresses from manufacturing/processing, subject the system pipes to external forces and widely varying pressures and fluid flow rates. This combination of stresses can produce both static and cyclic stress conditions, similar to a static load coupled with a low-amplitude cyclic load. Tests conducted under superimposed cyclic stresses on prestressed specimens were found to accelerate the stress-corrosion failures in the present copper-nickel alloy in an ammoniacal environment. During the testing process, it was established that chlorides of sodium and magnesium also had a role to play on the ammonia-induced SCC. Further tests were therefore designed, and this paper summarizes test results, which point to the possible mitigation of ammonia-induced SCC in cupronickels by the addition of MgCl2.  相似文献   

7.
The work presented in Part 1 of this article showed that additions of magnesium chloride (MgCl2) to ammonia solutions reduced the tendency of ammonia-induced stress-corrosion cracking (SCC) initiation in a Cu-5%Ni alloy. The present work was undertaken to study the SCC behavior of the test alloy exposed to ammonia in the presence of varying concentrations of MgCl2. The exposure to MgCl2 additions reduced the severity of the ammonia-induced SCC.  相似文献   

8.
We have performed partial HSO4 substitution in CsH2PO4 and studied the associated structural changes and the proton conductivity of the resultant (CsH2PO4)1 − x (CsHSO4) x solid solutions in the range x = 0.01–0.3. The results indicate that, at room temperature, the solid solutions are disordered. In the range x = 0.01–0.1, they are isostructural with the low-temperature phase of CsH2PO4 (sp. gr. P21/m), and their unit-cell parameters increase with x, whereas in the range x = 0.15–0.3 the solid solutions are isostructural with the high-temperature, cubic phase of CsH2PO4 (Pm3m), and their unit-cell parameter decreases. The conductivity of the (CsH2PO4)1 − x (CsHSO4) x solid solutions with x ≤ 0.3 depends significantly on their composition and increases at low temperatures by up to four orders of magnitude, approaching that of the superionic phase of CsH2PO4 in the range x = 0.15–0.3 because of the hydrogen bond weakening and increased proton mobility. The conductivity of the superionic phase decreases with increasing x by no more than a factor of 1.5–2, and the superionic phase transition, which occurs at 231°C in CsH2PO4, shifts to lower temperatures and disappears for x ≥ 0.15. The activation energy for low-temperature conduction decreases with increasing x: from 0.9 eV in CsH2PO4 to 0.48 eV at x = 0.1.  相似文献   

9.
The phase formation and reaction kinetics in the TiO2-Cr2O3 system have been studied by x-ray diffraction and electron microscopy. The Cr2O3 solubility in TiO2 has been accurately determined, and the rate parameters of the formation of solid solutions in this system have been evaluated. The results demonstrate that Cr2O3 dissolves in rutile and not in anatase. Cr2O3 markedly reduces the temperature of the anatase-rutile phase transition.  相似文献   

10.
Extruded n-type materials based on Bi2Te3-Bi2Se3 alloys containing 6 to 40 mol % Bi2Se3 have been investigated using microstructural analysis and thermoelectric measurements at room temperature and in the range 100–400 K. Their electrical properties have been compared to those of single-crystal analogs. Compositions have been found at which the extruded materials offer the highest thermoelectric performance in different temperature ranges.  相似文献   

11.
The limits of the LiLaO2-and Li2ZrO3-based solid solutions in the LiLaO2-Li2ZrO3 system have been determined: 0–10 mol % Li2ZrO3 and 0–5 mol % LiLaO2, respectively. We have studied the transport properties (electronic conductivity, temperature and composition dependences of conductivity and activation energy) of lithium lanthanate and the solid solutions in the LiLaO2-Li2ZrO3 system. Conduction in LiLaO2 is likely due to lithium ion transport through a polyhedral network.  相似文献   

12.
We have studied tetragonal scheelite-like solid solutions in the ternary system Na2MoO4-CaMoO4-Ce2/3MoO4: Na 0.7Cay Ce1.1 ? 2y/3 (MoO4)2 (0 ≤ y ≤ 0.6) and Na0.3 CazCe1.23? 2z/3 (MoO4)2 (0 ≤ z ≤ 1.4). The solid solutions melt congruently at temperatures from 1100 to 1200°C. Their lattice parameters have been determined. Using reflection spectra, we evaluated the color parameters of all the samples studied.  相似文献   

13.
This paper examines the dissolution behavior of the (111)A, (111)B, (110), and (100) surfaces of CdTe single crystals in aqueous H2O2-HI-C6H8O7 (citric acid) solutions. We have determined the dissolution rate of the crystals as a function of temperature and solution concentration, located the composition regions of polishing and selective etchants, and studied the microstructure and roughness of surfaces polished with optimized etchants. The etching behavior of CdTe is shown to depend on its crystallographic orientation.  相似文献   

14.
The multicomponent refractory oxide system Zn2(TiaSnb)1 ? x ZrxO4 (a + b = 1; a: b = 1: 5, 1: 4, 1: 3, 1: 2, 1: 1, 1: 0, 2: 1, 3: 1, 4: 1; x = 0?1.0; Δx = 0.05) has been studied by x-ray diffraction, using samples prepared by melting appropriate oxide mixtures in a low-temperature hydrogen-oxygen plasma. Two phases, both with wide homogeneity ranges, have been identified: α-phase, with a cubic inverse spinel structure, and β-phase, with a tetragonal spinel structure. The phase boundaries in the system have been determined. Structural data are presented for about 100 solid solutions of different compositions.  相似文献   

15.
The initial stages of the formation of CdAs2-ZnAs2 solid solutions are analyzed in terms of crystalchemical energetics. Given that the bond enthalpies decrease in the order H (Zn-As)< H (Cd-As)< H (As-As), it is concluded that, most likely, CdAs2-based solid solutions are substitutional and ZnAs2-based solid solutions are interstitial, and that the thermochemical stability of the substitutional solid solutions is higher than that of CdAs2 . The conclusions drawn from crystal-chemical analysis correlate with the reported x-ray diffraction, chemical analysis, resistivity, and Hall data for the solid solutions.Translated from Neorganicheskie Materialy, Vol. 41, No. 1, 2005, pp. 7–10. Original Russian Text Copyright © 2005 by Sanygin, Mikhailov, Palkina, Steblevskii, Kvardakov, Marenkin.  相似文献   

16.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

17.
We have studied the properties of nanocrystalline ZrO2-Y2O3-CeO2-CoO-Al2O3 powders prepared via hydrothermal treatment of a mixture of coprecipitated hydroxides at 210°C. A number of general trends are identified in the variation of the properties of the synthesized powders during heat treatment at temperatures from 500 to 1200°C. Our results demonstrate that the addition of 0.3 mol % CoO to nanocrystalline ZrO2-based powders containing 1 to 5 mol % Al2O3 allows one to obtain composites with good sinterability at a reduced temperature (1200°C).  相似文献   

18.
The distillation recovery of arsenic trichloride from saturated solutions in concentrated hydrochloric acid has been studied experimentally at a pressure of 1.013 × 105 Pa and temperatures from 60 to 75°C, and the optimal process temperature has been determined.  相似文献   

19.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

20.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号