首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For improving the mechanical properties of fibre reinforced concrete one can either increase the fibre content, use hybrid fibre systems, or one can attempt to align fibres in the direction of stress. In this paper, it is attempted to use the flow-properties of the fresh (self-compacting) concrete to change the fibre distribution and orientation. Using a single mixture of fibre reinforced concrete, containing 3% of 30 mm long straight steel fibres, the fibre distribution and orientation was determined in three different parts of a ‘U-shaped specimen’ where the concrete could flow in three different directions. The fibre distribution and orientation was determined from a CT-scan. Flexural tests show that the mechanical behaviour depends on the fibre distribution and orientation, which can be affected by changing the viscosity of the fresh mixture.  相似文献   

2.
The magnetic orientation of steel fibres in transparent silicone oil and in fresh, self-compacting concrete (SCC) beams is studied experimentally. The effect of the generated fibre locations and orientations on the failure response of the SCC beams is determined by means of three-point bend tests. A relatively small coil was designed for the magnetic orientation of single and multiple fibres in the transparent silicone oil. The time required for orienting a single fibre was measured for a range of magnetic fluxes, which showed to strongly decrease with increasing magnetic field strength. The presence of gravel on the fibre orientation behaviour was considered in order to mimic the influence by a concrete aggregate, indicating that the gravel does not prevent rotations and chain formations of fibres. A larger coil was developed for the magnetic orientation of fibres in freshly casted SCC beams. The energy absorption capacity of SCC beams subjected to three-point bending scales approximately proportionally with the number of “well-oriented fibres” bridging the catastrophic failure crack, which emphasizes the importance of adequately orienting steel fibres with the magnetic orientation technique.  相似文献   

3.
The influences of formwork surface on the final orientation of steel fibres immersed in self-compacting concrete and on the resulting mechanical response of the cast structural elements are investigated. Experimental observations of fibre orientation within cast slabs, obtained via computed tomography, indicate that fibres tend to orient according to the flow patterns during casting, but such tendencies are suppressed near rough formwork surfaces. Fibre orientation, in turn, affects the mechanical properties of the concrete as demonstrated by the load testing of beams extracted from the cast slabs. These processes and results are simulated using a computational fluid dynamics model of the casting process, in tandem with a lattice model of the fracture of the beam specimens. The computational fluid dynamics model determines the coordinates of each fibre within the concrete, which serve as input to the lattice model. Through comparisons with the experimental data, it is shown that these simulations correctly predict the phenomena of interest. We conclude the paper by highlighting a relationship between the number and orientation of the immersed steel fibres crossing the fracture plane and the mechanical response of the structural elements.  相似文献   

4.
Vertical sections exhibit a variety of factors that affect the bond between the embedded steel bars and the concrete, like casting position, concrete characteristics, and compaction procedure. The results obtained in this project indicate that bond strength decreases if the concrete depth below the horizontal bar increases, primarily because of the water-stop effect underneath the bar, and of the settlement of fresh concrete. This effect increases for larger values of water content and water-cement ratio (w/c), which normally cause an increase in slump, and a decrease in stability of concrete (resistance to bleeding, settlement, and segregation). However, very good bond properties were achieved by using self-compacting concrete (SCC) tested versus standard concrete mixes, is a demonstration that in the case of SCC higher slump values do not mean lower bond properties.  相似文献   

5.
自密实混凝土浇筑成型后发生离析会对力学性能和耐久性能产生不同程度的危害,这一问题决定了自密实混凝土在满足施工性能的同时必须具有足够的稳定性。而自密实混凝土高流动性、高填充性及高间隙通过性等优异的工作性能特征,又决定了其拌合物的稳定性高度敏感。从静态稳定性和动态稳定性两方面分别阐述了自密实混凝土的稳定性机理,探讨了自密实混凝土静态稳定性和动态稳定性的表征方法,从配合比参数、拌合物流变性能、施工工艺等方面讨论了影响自密实混凝土稳定性的因素,提出了自密实混凝土稳定性的研究前景。  相似文献   

6.
Rheology of concrete allows us to understand the flow behavior of concrete and further extend the quantitative evaluation of its construction performance. The use of a concrete rheometer is promising for the purpose, but sometimes limited high associated cost and procedure complexity. This study proposes a simulation-based model that correlates the slump flow test results to a concrete’s rheological properties, allowing quantitative evaluation through this simple method. The proposed model is based on single-fluid simulation using the volume-of-fluid method, with an extension to accommodate the partial segregation of coarse aggregates. Either the channel flow or the L-shaped panel filling of SCC is simulated using the rheological properties obtained by our model. Finally, the rheograph describing the self-compacting ability of SCC is updated.  相似文献   

7.
Viscosity modifying admixtures (VMAs) are high molecular weight, water soluble organic polymers that are used to stabilise the rheological properties and consistency of self-compacting concrete (SCC). Most studies on VMA focus on the influence of different types and dosages of VMA on the rheological properties and the compatibility issues between superplasticiser and VMA. To obtain the desired rheological properties and to reduce the cost, optimisation of the VMA dosage is essential. In the present study, a simple method was developed for optimising the VMA dosage for the cementitious pastes of different water to powder ratio. The principle of this method was based on Stokes’ law. Rheological properties of SCC pastes with VMA were studied using a viscometer. The studies were also extended to concrete for validation of the optimised dosage obtained from the cementitious paste tests. The results obtained clearly indicate that the optimised dosage obtained by using the empirical method yields SCC without segregation. The lower dosages are not sufficient enough to control the segregation. On the other hand, dosages higher than optimal resulted in reduced slump flow.  相似文献   

8.
The properties of fibre reinforced composites are largely determined by the method of fabrication. With steel fibre concrete, the geometry of the fibre, the method of casting and compaction, and the compactibility of the fibre concrete mix all significantly influence the disposition of the fibres in the hardened composite. Tests on fibre concrete mixes with adequate flowability characteristics are reported to show that apart from these factors, the size, shape and surface texture of the aggregates all very much affect not only the fibre orientation but also the fibre distribution during the manufacturing process. The degree of compaction as measured by the solidity of the compacted concrete is influenced both by the method of compaction, and when vibrated, by the duration of vibration. Internal vibration increased compressive strength marginally compared to external vibration, but the latter increased the flexural strength substantially compared to internal vibration. The effect of vibration was more pronounced with dry mixes. Increasing the size and the roughness of the surface texture of the aggregates reduced the flexural strength by as much as 25%. Vertical casting reduced not only flexural strength but also the capability of the fibres in resisting stress in the post-cracking stages. Loading in the “as cast” direction produced a small, but noticeable, increase in flexural strength but had negligible effect in compression. Round and smooth aggregates encouraged fibre settlement in the bottom half of the ‘as cast’ section, but this was counteracted by larger aggregate sizes, crushed aggregates and higher fibre volumes. The results show that good mix design and external vibration are necessary to optimise the performance of the fibres.  相似文献   

9.
Within the scope of a parameter study the influence of the mixture composition of different self-compacting concretes on the fresh concrete properties was investigated. For this purpose the standard test methods as well as the fresh concrete rheometer “BTRHEOM” were used. The concrete was modelled as a two-phase system, consisting of the fluid phase paste and the solid phase aggregates. The consistency control parameters paste volume, mortar volume and the coarse aggregate volume could be transferred into the model parameter thickness of excess paste. By means of this model parameter the characteristic values of the standard test methods like slump flow test and V-funnel test as well as the fundamental rheological parameters yield stress and the plastic viscosity could be described. A comparative study showed that the yield stress and the plastic viscosity of self-compacting concrete can be estimated based on the characteristic values of the slump flow test.  相似文献   

10.
The mechanical properties of fibre composite materials are largely determined by the orientation of fibres within the matrix. Which orientation distribution short fibres follow in different parts of a structural element is still a subject for research and discussions in the scientific community. In this article, we present a modern and advanced method for measuring the orientation of short fibres in steel fibre-reinforced concrete (SFRC) by X-ray microtomography. With this method, a voxel image of the fibres is obtained directly in 3D, and the orientation of each individual fibre is calculated based on a skeletonized representation of this image. Scans of 12 SFRC samples, taken from the central height region of real-size floor slabs, reveal the fibres to be mostly horizontally oriented near the centre of a floor slab and more vertically oriented near the edge; here the alignment with the formwork dominates. The fibre orientation distributions are characterized by several orientation parameters as quantitative measures for the alignment. On the practical side, this method has the potential to be incorporated into the development and production process of SFRC structures to verify how the fibres contribute to capacity.  相似文献   

11.
In order to reduce energy consumption and CO2 emission, and increase production, cement manufacturers are blending or inter-grinding mineral additives such as slag, natural pozzolana, and limestone. This paper reports on the results of an experimental study on the production of self-compacting concrete (SCC) produced with portland cement (PC), portland pozzolana (PPC) and portland limestone (PLC) blended cements. Moreover, the effect of different replacement levels (0–45%) of ground granulated blast furnace slag (GGBFS) with the PPC, PLC, and PC cements on fresh properties (such as slump flow diameter, T 500 slump flow time, V-funnel flow time, L-box height ratio, setting time, and viscosity) and hardened properties (such as compressive strength and ultrasonic pulse velocity) of self-compacting concretes are investigated. From the test results, it was found that it was possible to manufacture self-compacting concretes with PPC or PLC cements with comparable or superior performance to that of PC cement. Furthermore, the use of GGBFS in plain and especially blended cement self-compacting concrete production considerably enhanced the fresh characteristics of SCCs.  相似文献   

12.
In this study, nine different types of concrete were adopted: normal concrete (NC) with low slump (68 mm) and eight types of self-compacting concrete (SCC) in which cement was partially replaced by four kinds of replacements (25%, 30%, 35% and 40%) of class F fly ash (FA) and by four kinds of replacements (5%, 10%, 15% and 20%) of silica fume (SF). The main objective of this research was to evaluate the effect of different types and dosages of mineral additions on the moment capacities and stiffnesses of the beam specimens and the bond strength of tension lap-spliced bars embedded in NC and self-compacting concretes (SCCs). To achieve these objectives, 27 full-scale beam specimens (2000 × 300 × 200 mm) were tested. In all beam specimens, 20 mm reinforcing bars were used with a 300 mm splice length as tension reinforcement. The variable used was the amount of FA and SF incorporated into SCC. Each beam was designed with bars spliced in a constant moment region at midspan. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. Moreover, bond strength of SCC beams was compared to that of NC beams of the same dimensions, steel configuration and approximately the same water-to-cement ratio. In conclusion, the beam specimens produced from SCC containing 5% SF and 30% FA had the highest normalized bond strength with 1.07 whilst the replacements of Portland cement (PC) by an equal weight of FA or SF in SCC had generally the positive effect on the bond strength of reinforcing bar regardless of the dosage of mineral admixture compared to the specimen with NC indicating that SCC due to its superior filling capability more effectively covered the reinforcements and the grain-size distribution and particle packing improved ensuring greater cohesiveness. Moreover, the beam specimens produced from SCC with SF had the greatest stiffness compared to other all beams as result of the improvement of concrete pore structure due to the pozzolanic activity and the filler effect of high fineness silica fume.  相似文献   

13.
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall clements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish.This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a columin. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 mm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured.The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superplasticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.  相似文献   

14.
The incorporation of fibres into concrete produces important benefits, mainly on the residual load-bearing capacity. These improvements depend on the type, content and orientation of the fibres, being a strong relationship between the number of fibres in the fracture surfaces and the post peak parameters. Although the fibres could be homogeneously distributed after mixing, the casting and compaction processes can significantly affect the fibre distribution and orientation, and consequently the mechanical performance of the material. In the case of Fibre Reinforced Self Compacting Concrete (FR-SCC) the existence of significant flow and wall effects may influence fibre orientation. This paper analyzes the fibre orientation in thin structural elements cast with FR-SCC and its effects on the residual mechanical properties. A slab of 0.90 × 1.80 × 0.09 m, a wall of 0.50 × 2.00 × 0.08 m, and a beam of 0.15 × 0.15 × 2.50 m were selected as representative elements where different concrete flow conditions take place. A strong heterogeneity in the orientation of the fibres was found. The fibre orientation varied with the flow rate and with the wall effect; the thickness of the elements or the proximity to the bottom of the moulds appeared as important variables. It was demonstrated that in thin elements the residual mechanical properties can be quite different when diverse zones and/or directions of the structural elements are considered.  相似文献   

15.
Steel fibre reinforced self-compacting concrete (SFRSCC) can combine the benefits of self-consolidating concrete technology with those derived from adding steel fibres to quasi-brittle cement based materials. In a recent applied research project joining pre-casting industry, private and public research institutions, a method was developed to design cost-competitive SFRSCC of rheological and mechanical properties required for the prefabrication of SFRSCC façade panels. To assure safe demoulding process of the panels, the influence of the concrete age on the compression behaviour of the SFRSCC should be known. For this purpose, series of tests with specimens of 12 h to 28 days were tested in order to analyze the age influence on the compressive strength, strain at peak stress, Young’s modulus, and compressive volumetric fracture energy. The experimental program was divided in two groups of test series, one with SFRSCC of a volumetric fibre percentage of 0.38% and the other with 0.57%. To apply the obtained data in the design and numerical analysis framework, the influence of the age on these SFRSCC properties was modelled. This work describes the carried out experimental program, presents and analyzes the obtained results, and provides the derived analytical expressions.  相似文献   

16.
A series of 40 precast prestressed roof elements was cast, employing a self-compacting steel fibre reinforced concrete (SCSFRC). They are being used in an industrial building. The fibre distribution within the roof elements was investigated by means of a suitable test procedure and correlated with results obtained from cube samples drawn from the batches and tested in the fresh state. Companion slabs were also cast and tested under four point bending, in order to study the correlation between fibre distribution and the mechanical properties of the composite. The work presented here analyses the correlation between fibre distribution, workability and mechanical properties of steel fibre reinforced concrete (SFRC) with the aim of optimising both its fresh- and hardened-state properties for a series production of precast SFRC roof elements.  相似文献   

17.
This paper presents the results of an experimental investigation carried out to study the effect of granulated blast furnace slag and two types of superplasticizers on the properties of self-compacting concrete (SCC). In control SCC, cement was replaced with 10%, 15%, 20%, and 25% of blast furnace slag. Two types of superplasticizers: polycarboxylate based superplasticizer and naphthalene sulphonate based superplasticizers were used. Tests were conducted for slump flow, the modified slump test, V-Funnel, J-Ring, U-Box, and compressive strength. The results showed that polycarboxylate based superplasticizer concrete mixes give more workability and higher compressive strength, at all ages, than those with naphthalene sulphonate based superplasticizer. Inclusion of blast furnace slag by substitution to cement was found to be very beneficial to fresh self-compacting concrete. An improvement of workability was observed up to 20% of slag content with an optimum content of 15%. Workability retention of about 45 min with 15% and 20% of slag content was obtained using a polycarboxylate based superplasticizer; compressive strength decreased with the increase in slag content, as occurs for vibrated concrete, although at later ages the differences were small.  相似文献   

18.
In this article experimental and numerical studies of internal frost resistance of self-compacting and normal concrete, with and without fibres, are outlined. For this purpose self-compacting concrete with low water-cement ratio was studied, with varying amounts of filler, crystalline or sedimentary, different pouring pressures and different mixing procedure with two ages at the start of testing. The concrete was frozen twice a day at ±20^∘C all around the specimen up to 300 cycles. Measurement of length, weight and internal fundamental frequency were performed at the start of testing, at 100 cycles and at 300 frost cycles. Tests were also carried out on submerged cast self-compacting concrete and on self-compacting concrete with fibres. In reference tests normal concrete was studied in parallel. In general self-compacting concrete behaved well or better than normal concrete to internal frost except for the submerged cast concrete, where large segregation occurred and low internal frost resistance followed. The main reasons for low internal frost resistance in submerged applications were probably differences in water-cement ratio in the casting due to cement, water or/and aggregate segregation. Polypropylene fibres in concrete seemed to prohibit the movement of water in the air void system so that a sudden internal collapse occurred before 300 frost cycles.  相似文献   

19.
Governing the dispersion and the orientation of fibres in concrete through a suitably balanced set of fresh state properties and a carefully designed casting procedure, is a feasible and cost-effective way to achieve a superior mechanical performance of fibre reinforced cementitious composites, which may be required by the intended application, even keeping the fibre content at relatively low values (e.g. around 1% by volume). In this paper the possibility of pursuing the above said “integrated” approach has been addressed in the framework of larger project focused on developing a deflection-hardening FRCC (DHFRCC), reinforced with 100 kg/m3 (1.27% by volume) of short steel fibres (13 mm long and 0.16 mm in diameter). The material has to be employed to manufacture thin (30 mm) roof elements, without any kind of conventional reinforcement, which have been anticipated to work, as simply supported beams, over a 2.5 m span. The study hence paves the way to the possibility of exploiting at an industrial level the correlation among fresh state performance, fibre dispersion and hardened state properties of self consolidating steel fibre reinforced concrete to achieve enhanced structural performance tailored to the specific application.  相似文献   

20.
Over the past few years, polyolefin fiber reinforced self-compacting concrete has shown high performance in both fresh and hardened state. Its fracture behavior for small deformations could be enhanced with a small amount of steel-hooked fibers, obtaining a hybrid fiber-reinforced concrete well suited for structural use. Four types of conventional fiber-reinforced concrete with steel and polyolefin fibers were produced on the basis of the same self-compacting concrete also manufactured as reference. These concrete mixtures were manufactured separately with the same fiber contents being subsequently used for two more hybrid mixtures. Fracture properties, in addition to fresh and mechanical properties, were assessed. The research showed both synergies (with the two types of fibers working together in the fracture processes) and an improvement of the orientation and distribution of the fibers on the fracture surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号