首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asphalt materials used in road pavements are exposed to repeated heavy traffic loading under changing climates. These phenomena make pavements prone to fatigue deterioration as a consequence of the formation of micro-cracks, which can coalesce into a network, ultimately leading to macro cracking and structural collapse. Susceptibility of asphalt mixtures to fatigue is usually evaluated through cyclic laboratory testing, where asphalt specimens are subjected to sinusoidal loading cycles. As the number of cycles increases, a significant loss in material stiffness occurs. However, if loading is interrupted by introducing a rest period between two continuous loading phases, an important change in material behavior is observed. This is associated with a substantial stiffness recovery, which in turn triggers the material’s fatigue life. In this study, the phenomenon of stiffness recovery during rest periods is investigated. Cyclic uniaxial tension–compression loading tests are conducted in stress-control mode and rest periods of different durations are considered. Dissipated energy is analyzed and used to assess the material’s capability for recovery and a new recovery index is proposed. It is found that the newly developed index can successfully assess the recovery properties of asphalt mixture.  相似文献   

2.
Asphalt mixtures are composed by a mass of aggregates (more than 90% of their total weight), which are bonded by a bituminous binder. Despite the fact that the binder is not the main component of these materials (around 5% of their total weight), it exerts a high influence on their mechanical response. In this sense, the service life of asphalt pavements will directly depend on the type of binder used, and thus an adequate choice is crucial to construct more durable roads. Because of this fact, it is necessary to know the characteristics of the bitumen in order to reduce the impact of different distresses that appear on roads. For this purpose, this paper studies the influence of the binder properties in the appearance of the main distresses that affect asphalt pavements around the world (stripping, fatigue cracking and plastic deformations). Five bitumens with different properties have been analysed during this research using diverse binder (UCL, multiple stress creep and recovery test and dynamic shear rheometer time sweep) and mixture (water sensitivity, wheel tracking and UGR-FACT) tests. The results obtained show that the properties of the binder influence the long-term performance of bituminous mixtures. In this sense, it can be said that flexible binders which are able to recover plastic deformations could extend the service life of the pavements.  相似文献   

3.
Different components of deep-sea submersibles,such as the pressure hull,are usually subjected to inter-mittent loading,dwell loading,and unloading during service.Therefore,for the design and reliability assessment of structural parts under dwell fatigue loading,understanding the effects of intermittent loading time on dwell fatigue behavior of the alloys is essential.In this study,the effects of the inter-mittent loading time and stress ratio on dwell fatigue behavior of the titanium alloy Ti-6Al-4V ELI were investigated.Results suggest that the dwell fatigue failure modes of Ti-6Al-4V ELI can be classified into three types,i.e.,fatigue failure mode,ductile failure mode,and mixed failure mode.The intermittent loading time does not affect the dwell fatigue behavior,whereas the stress ratio significantly affects the dwell fatigue life and dwell fatigue mechanism.The dwell fatigue life increases with an increase in the stress ratio for the same maximum stress,and specimens with a negative stress ratio tend to undergo ductile failure.The mechanism of dwell fatigue of titanium alloys is attribute to an increase in the plastic strain caused by the part of the dwell loading,thereby resulting in an increase in the actual stress of the specimens during the subsequent loading cycles and aiding the growth of the formed crack or damage,along with the local plastic strain or damage induced by the part of the fatigue load promoting the cumu-lative plastic strain during the dwell fatigue process.The interaction between dwell loading and fatigue loading accelerates specimen failure,in contrast to the case for individual creep or fatigue loading alone.The dwell fatigue life and cumulative maximum strain during the first loading cycle could be correlated by a linear relationship on the log-log scale.This relationship can be used to evaluate the dwell fatigue life of Ti alloys with the maximum stress dwell.  相似文献   

4.
The tensile properties and failure mode of heat treated and liquid nitrocarburized tool steels were studied. The tested steels are used as die and tool materials for plastic molds and punching/blanking dies, where wear resistance is required. In addition to intense friction, the main die block and other die components are subjected to tensile and repetitive stresses during operation (tension and fatigue loading). Therefore, hardness, tensile, and fatigue resistance are also critical quality parameters that contribute to material reliability and tool life. However, this study is an initial component of research and does not include fatigue data.  相似文献   

5.
Bitumen ageing plays a significant role in determining the resistance of asphalt mixes to fatigue cracking. Regardless of the type of ageing (oxidation during manufacture or during the service life), hardening effects increase the risk of cracking. The objective of this work is to examine the combined effect of the loss of volatiles and oxidation produced during ageing on the fatigue behaviour of the bitumen. To this end, different types of bitumen were subjected to accelerated ageing in the laboratory, simulating long-term ageing (RTFOT + PAV). They were then subjected to traditional tests (penetration, softening point, Fraass fragility point, dynamic viscosity, etc.), Dynamic Shear Rheometer tests (frequency and temperature sweep), and the EBADE test (a fatigue strain sweep test at different temperatures). Different temperatures have been used to evaluate the effect of visco-elastic phenomena on aged binder fatigue. The results showed that, in terms of their response to ageing, modified binders show a higher rate of variation in their general properties than conventional binders. In addition, it was shown that temperature plays an important role in the impact of ageing on the fatigue response of bituminous binders, and in the same way, in the mechanical response of these materials.  相似文献   

6.
This article examines the self-healing repair of delamination damage in mendable carbon fibre–epoxy laminates under static or fatigue interlaminar loading. The healing of delamination cracks in laminates containing particles or fibres of the mendable thermoplastic poly[ethylene-co-(methacrylic acid)] (EMAA) was investigated. The results showed that the formation of large-scale bridging zone of EMAA ligaments along the crack upon healing yielded a large increase (~300%) in the static mode I interlaminar fracture toughness, exceeding the requirement of full restoration. The mendable laminates retained high healing efficiency with multiple repair cycles because of the capability of EMAA to reform the bridging zone under static delamination crack growth conditions. Under fatigue loading, healing by the EMAA was found to restore the mode I fatigue crack growth resistance, with the rates of growth being slightly less than that pertinent to the unmodified laminate. The EMAA bridging zone, which generated high toughness under static loading conditions, does not develop under fatigue loading because of rapid fatigue failure of the crack bridging ligaments. Similar to the multiple healing capability of EMAA under static loading, multiple healing of delamination fatigue cracks is confirmed, with the fatigue crack growth rates remaining approximately unchanged. This study shows that EMAA was capable of full recovery of fatigue crack growth resistance and superior healing efficiency for static loading.  相似文献   

7.
对三种交变应变量循环后的疲劳寿命计在不同温度下进行退火实验,由它们在低于再结晶温度退火后电阻去除量的不同,得出疲劳寿命计在交变应变作用下电阻累积的主要机理。根据疲劳寿命计的标定特性曲线和在载荷谱下的响应特性,由三个不同方向粘贴的疲劳寿命计电阻变化推算载荷谱,该方法扩大了疲劳寿命计的使用范围。  相似文献   

8.
In pavement engineering, fatigue resistance is evaluated using different tests protocols and different specimen geometries. The dependency of the specimen shape geometry on fatigue performance does not allow the evolution of intrinsic material properties. This paper deals with the calibration of intrinsic fatigue damage parameters for bituminous materials. A fatigue damage model is implemented. The decrease of stiffness of the specimen during fatigue tests for different laboratory testing conditions is calculated from finite element computations. An inverse optimization technique is used in order to adjust the fatigue damage parameters on bending fatigue tests. A Levenberg-Marquardt algorithm is implemented to fit the finite element specimen global response on experimental results. An application on bending laboratory fatigue tests is presented to illustrate the applicability of the method for pavement engineering.  相似文献   

9.
The reliability evaluation of structural components under random loading is affected by several uncertainties. Proper statistical tools should be used to manage the large amount of causalities and the lack of knowledge on the actual reliability-affecting parameters. For fatigue reliability prediction of a structural component, the probability distribution of material fatigue resistance should be determined, given that the scatter of loading spectra is known and a suitable damage cumulating model is chosen. In the randomness of fatigue resistance of a material, constant amplitude fatigue test results show that at any stress level the fatigue life is a random variable. In this instance fatigue life is affected by a variety of influential factors, such as stress amplitude, mean stress, notch factor, temperature, etc. Therefore a hybrid neural computing method was proposed for describing the fatigue data trends and the statistical scatter of fatigue life under constant loading conditions for an arbitrary set of influential factors. To support the main idea, two examples are presented. It can be concluded that the improved neural computing method is suitable for describing the fatigue data trends and the scatter of fatigue life under constant loading conditions for an arbitrary set of influential factors, once the optimal neural network is designed and trained.  相似文献   

10.
The objective of this work is to derive modelling of the fatigue behaviour of cross-ply laminates from the experimental results obtained in the case of three-point bending tests. Modelling the fatigue behaviour is based on the stiffness reduction of test specimens. Firstly, experimental results are described using interpolation functions. Then, the characteristic coefficients of these functions are studied as function of the laminate properties and loading conditions. This approach allows to predict the fatigue life of composite laminates while avoiding a large number of fatigue tests. Wöhler curves are used to compare the experimental and analytical results, and a good agreement is found between the results. Next, a simple approach is considered to define a damage parameter. It is based on the analogy between the mechanical behaviour and the fatigue damage evolution of composite laminates during fatigue tests. The developed models are applied to analyse the influence of constituents on the fatigue behaviour and damage development of composite materials under fatigue loading.  相似文献   

11.
Introducing rest periods during fatigue tests can significantly improve the remaining lifetime of bituminous mixes. An experimental protocol has been designed such as to study the range and kinetics of loss of stiffness and recovering of properties during rest periods. The range of the maximum recovery depends on the number of cycles previously applied. Recovery is not permanent and the loss of stiffness speeds up under repeated fatigue sequences. The speed of loss of stiffness seems to be a damage indicator. It evolves differently according to the fact that the specimen has (or not) previously been subjected to more aggressive solicitations. This points out the fact that the mix “keeps in memory” previous loadings.  相似文献   

12.
Current fatigue life analysis of metallic rotorcraft dynamic components are based on a linear cumulative damage concept known as Miner's rule. This type of analysis assumes that there is no load sequence effect that occurs during the fatigue loading history. Past studies have shown that linear cumulative damage analysis of fatigue tests has produced life predictions that have been conservative as well as unconservative. Some of this uncertainty has been attributed to the fact that load sequence effects do exist in most fatigue load spectra. As a first phase the study reported herein was done to evaluate the load sequencing effects that could exist in commercial fixed-wing fatigue load spectra. To evaluate these effects a typical commercial wing spectra was reordered using a scheme that had previously been shown in fatigue block loading to produce the shortest fatigue lives. This scheme starts with the smallest load range in a load sequence and proceeds in ascending order until the largest load range is reached. Tests on open hole test specimens made of 2024-T3 aluminum alloy were conducted on the normal sequence of loads as well as the reordered scheme called lo–hi. Test results showed no significant differences between the fatigue lives of the normal load sequence and the reordered load sequence. A computer program called FASTRAN which calculates total fatigue life using only crack growth data was shown to predict the fatigue life of the spectrum tests with acceptable accuracy.  相似文献   

13.
The research work described in the paper focused on fatigue and healing properties of bituminous mastics reinforced with nano-sized additives.Commercially available multiwall carbon nanotubes (CNTs) and montmorillonite nanoclay (NC) were combined with a single base bitumen and a standard mineral filler to produce bituminous mastics. These blends were prepared in the laboratory by making use of a technique consisting in simple shear mixing followed by sonication.Fatigue behaviour of mastics under repeated loading was investigated by means of time sweeps performed in the strain-controlled mode at various amplitudes. Healing potential was assessed by adopting a testing protocol specifically conceived to discriminate between recovery of damage induced by fatigue loading and other artefact phenomena which may affect material response. All rheological measurements were carried out with a dynamic shear rheometer in the parallel plates geometry.Outcomes of the experimental investigation were found to be highly dependent on the nature of additive type, as a result of the key role played by interaction mechanisms that nano-particles can establish within the bituminous mastic.  相似文献   

14.
The structural durability of welded structures is determined by the interaction of different influencing parameters such as loading mode, spectrum shape, residual stresses and weld geometry among others. Examples from plant, offshore, transportation and automotive engineering show how these parameters influence the fatigue life and to what extent they are considered in design codes. Especially, under spectrum loading, the stress decreasing effect of tensile residual stresses is not as high as under constant amplitude loading; this knowledge benefits light weight design. The overloads harmed only the low strength joints under pulsating bending. In all other cases investigated, with low, medium and high-strength steels, a significant decrease of fatigue life was not observed; on the contrary, significant improvement of fatigue life could even be observed. However, a systematic interaction with material strength, loading mode and residual stresses was not apparent.  相似文献   

15.
The fatigue endurance limit of binders is the results of more phenomena (e.g. viscoelasticity, damage, healing, thixotropy, steric hardening) that interact simultaneously making the mechanisms behind the fatigue behavior not properly understood.Currently, there is no consolidated analytical approach inclusive of such phenomena to characterize fatigue performance.This research proposes a criterion to determine the fatigue resistance of binders subjected to monotonous cyclic loading with multiple rest periods. The main rheological properties are measured during each stage using a Dynamic Shear Rheometer and the modeling of their evolution is proposed. The experimental program includes different binders in order to investigate the effects of SBS modification levels and aged binder contents on self-healing potential and fatigue behavior.The proposed criterion enables to identify fundamental contributions leading to a comprehensive fatigue endurance limit. This approach allows different binders to be distinguished taking into account their self-healing capacity and can help to establish a better correlation with in-service performance of mixtures.Moreover, a comparison with a previous analytical approach based on the same kind of test (time sweep) with only one rest period is proposed in order to evaluate the effectiveness and reliability of the proposed criterion. Results show that multiple rest periods are needed in order to fully understand the self-healing and fatigue behavior of bituminous binders and to quantify the contributions given by thixotropy.  相似文献   

16.
The present study intends to examine various cyclic plasticity models in fatigue assessment of 304 and 1045 steels based on the critical plane-energy damage approach developed earlier. Cyclic plasticity models of linear hardening, nonlinear, multi-surface, and two-surface were chosen to study fatigue damage and life of materials under proportional and non-proportional loading conditions. The effect of additional hardening induced due to non-proportional loading in 1045 steel and particularly in 304 steel was further evaluated as different constitutive models were employed. In the present study, the plasticity models were calibrated by the equivalent cyclic stress–strain curves. The merits of the models were then investigated to assess materials deformation under proportional and non-proportional loading conditions. Under non-proportional loading, the cyclic plasticity models were found to be highly dependent upon the employed hardening rule as well as the materials properties/coefficients.The stress and strain components calculated through constitutive laws were then used as input parameters to evaluate fatigue damage and assess the fatigue life of materials based on the critical plane-energy approach.The calculated values of stress components based on constitutive laws resulted in a good agreement with those of experimentally obtained under various loading paths of proportional and non-proportional conditions in 1045 steels. In 304 steel, the calculated stress components were however found in good agreement when plasticity models were employed for proportional loading conditions. Under non-proportional loading, the application of the multi-surface plasticity model in conjunction with the fatigue damage approach resulted in more reasonable results as compared with other plasticity models. This can be attributed to the motion of the yield surface in deviatoric stress space in the multi-surface model encountering additional hardening effect through estimated higher stress values under non-proportional loading conditions.Predicted fatigue lives based on the critical plane-energy damage approach showed such range of agreements as ±1.05–±3.0 factors in 1045 and 304 steels as compared with experimental life data when various constitutive plasticity models were employed.  相似文献   

17.
Abstract— In this study, in-phase and out-of-phase thermal fatigue tests at the temperature ranges of 473–823 and 573–873 K were carried out on three kinds of 304 stainless steel as well as isothermal low-cycle fatigue tests at 823 and 873 K, in order to investigate the properties of thermal fatigue strength under creep-fatigue interaction. Based on the relation between the fatigue life and the failure mode, the time-dependent effect on the fatigue life was discussed. Also, an attempt was made to apply the strain range partitioning method to the thermal fatigue life prediction. It is difficult to evaluate the thermal fatigue life at high temperatures simply from the isothermal fatigue life under the same strain condition. It was also found that an unbalanced creep strain during tensile loading, which increased the number of intergranular cracks, gave the largest damage to the material. By the strain range partitioning method, it was possible to predict the isothermal fatigue life and the thermal fatigue life at the low temperature range within a factor of 1·5. On the other hand, the thermal fatigue life at the high temperature range could only be predicted within a factor of 3. However, further detailed investigations are required on the technique of partitioning the inelastic strain range and predicting the effects of dynamic strain ageing and recovery during strain holds.  相似文献   

18.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

19.
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading.  相似文献   

20.
Fatigue of bituminous mixtures   总被引:1,自引:0,他引:1  
This paper presents an interlaboratory test campaign organized by the RILEM 182-PEB Technical Committee. In the campaign, 11 different test methods, comprising uniaxial tension/compression, 2-, 3- and 4-point bending and indirecttension tests, were utilized in order to investigate fatigue characteristics of a dense graded asphalt concrete mixture. The testing conditions specified were sinusoidal excitation at 10Hz and 10°C using controlled strain and stress modes. In total, more than 150 fatigue tests were carried out during the investigation. The fatigue test results were analyzed using both classical as well as continuum damage mechanics approaches. The fatigue test results obtained using the classical fatigue approach are considerably influenced by test type and mode of loading (controlled stress or strain) used. Consequently, this approach has limited use in realistic fatigue characterization of bituminous materials and pavement structures. In contrast to the classical approach, models founded on continuum damage theory may serve to isolate intrinsic fatigue characteristics from the influence of so-called biased effects, which are largely caused by the accelerated laboratory testing. The continuum damage models investigated may constitute steps, towards a rational mechanistic fatigue characterization model, which are important for effective future pavement design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号