首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Liu Q  Zhang S  Wu B  Guo J  Xie J  Gu M  Zhao Y  Yun L  Liu K 《Analytical chemistry》2005,77(16):5302-5310
A novel class of chiral melamine derivatives has been designed and synthesized. The ability of these compounds to perform chiral recognition toward 19 natural chiral alpha-amino acids has been investigated by electrospray ionization tandem mass spectrometry for the first time. The enantioselectivities of these new chiral selectors are encouraging. To elucidate some mechanism and regularity in the chiral recognition process using chiral melamine derivatives as chiral selectors, the effect of different noncovalent interactions caused by various chiral or achiral moieties in melamine derivatives on the chiral recognition in the gas phase has been studied at the same time. The result shows that electrostatic, hydrogen bond, pi-pi stacking, and steric interaction between selector and analyte play important roles in the association and enantioselective recognition of amino acids with the chiral melamine derivatives as chiral selectors. Enantiodiscrimination for analytes with different structures and properties could be improved by modifying substituents in melamine derivatives on purpose.  相似文献   

2.
All-R/all-S enantiomers of oligoalanines (Ala(n), n = 1-10) with N-terminal protection group have been separated by HPLC on chiral stationary phases based on various cinchona alkaloid selectors. Structure-enantioselectivity relationships derived by extensive selector structure optimization provided insights into binding mechanisms and chiral recognition. Their interpretation was supported by X-ray crystal structures of amino acid and dipeptide, respectively, in complex with chiral selector. Optimized selectors have bulky elements representing steric barriers and deep binding pockets that afforded very high enantioselectivities; e.g., for the all-R and all-S enantiomers of N-(3,5-dinitrobenzoyl)alanylalanine, an alpha-value of 20.0 (corresponding to deltadeltaG of -7.43 kJ/mol) was obtained with a chiral stationary phase based on 6'-(neopentoxy)-9-O-tert-butylcarbamoylcinchonidine. Further, a chiral stationary phase based on 1,4-bis(9-O-quinidinyl)phthalazine was able to distinguish between the all-R and all-S enantiomers of hepta- to decaalanine peptides with enantioselectivity values between 1.8 and 1.9, corresponding to deltadeltaG of -1.46 and -1.59 kJ/mol, respectively.  相似文献   

3.
Chiral ionic liquids as stationary phases in gas chromatography   总被引:9,自引:0,他引:9  
Recently, it has been found that room-temperature ionic liquids can be used as stable, unusual selectivity stationary phases. They show "dual nature" properties, in that they separate nonpolar compounds as if they are nonpolar stationary phases and separate polar compounds as if they are polar stationary phases. Extending ionic liquids to the realm of chiral separations can be done in two ways: (1) a chiral selector can be dissolved in an achiral ionic liquid, or (2) the ionic liquid itself can be chiral. There is a single precedent for the first approach, but nothing has been reported for the second approach. In this work, we present the first enantiomeric separations using chiral ionic liquid stationary phases in gas chromatography. Compounds that have been separated using these ionic liquid chiral selectors include alcohols, diols, sulfoxides, epoxides, and acetylated amines. Because of the synthetic nature of these chiral selectors, the configuration of the stereogenic center can be controlled and altered for mechanistic studies and reversing enantiomeric retention.  相似文献   

4.
A simple and rapid screening method of the chiral stationary phase during high-performance liquid chromatography (HPLC) utilizing a quartz crystal microbalance (QCM) has been developed for the chiral separation of a pair of enantiomers. The outline of the method is as follows: a self-assembled monolayer (SAM) is constructed on the gold electrodes of the QCM sensor chips by utilizing the interaction between thiols and gold. The chiral selectors used as chiral stationary phases in the HPLC are then immobilized, and a pseudostationary phase is constructed on the electrodes. Subsequently, the sensors are equilibrated in the solutions, the targeted chiral samples are injected, and the frequency changes are observed. Four kinds of chiral molecules and three kinds of chiral stationary phases were examined in this study. When chiral separation is possible using the chiral stationary phase immobilized on the sensors, significant differences in the frequency changes are observed because the intensities based on interactions differ among the isomers. The developed method can predict not only the possibility for chiral separation but also the elution order from the chiral stationary phase column. Furthermore, the degree of the mutual separation of a pair of enantiomers seems to be roughly predictable from the difference in the frequency change (DeltaF) and first-order association rate constant (k(obs)). The method does not require several different kinds of chiral columns that are more expensive than achiral ones such as the octadecylsilica (ODS) column. The required amounts of the chiral stationary phases are extremely small, and the sensors with immobilized chiral selectors are reusable. In addition, the method requires only a few minutes to complete the analysis. Thus, considerable reductions in both cost and time are realized. By applying the developed method to many chiral molecules and chiral stationary phases, its superiority may be corroborated; thus, it is expected that the method can be effectively used for the selection of chiral stationary phases.  相似文献   

5.
Two amino acid-derived (leucinol and N-methylpyrrolidinol) chiral ionic liquids are synthesized and characterized in both monomeric and polymeric forms. Leucinol-based chiral cationic surfactant is a room-temperature ionic liquid, and pyrrolidinol-based chiral cationic surfactant melts at 30-35 degrees C to form an ionic liquid (IL). The monomeric and polymeric ILs are thoroughly characterized to determine critical micelle concentration, aggregation number, polarity, optical rotation, and partial specific volume. Herein, we present the first enantioseparation using chiral IL as a pseudostationary phase in capillary electrophoresis. Chiral separation of two acidic analytes, (+/-)-alpha-bromophenylacetic acid and (+/-)-2-(2-chlorophenoxy)propanoic acid (+/-)-(2-PPA) can be achieved with both monomers and polymers of undecenoxycarbonyl-L-pryrrolidinol bromide (L-UCPB) and undecenoxycarbonyl-L-leucinol bromide (L-UCLB) at 25 mM surfactant concentration using phosphate buffer at pH 7.50. The chiral recognition seems to be facilitated by the extent of interaction of the acidic analytes with the cationic headgroup of chiral selectors. Polysodium N-undecenoxycarbonyl-L-leucine sulfate (poly-L-SUCLS) and polysodium N-undecenoxycarbonyl-L-leucinate (poly-L-SUCL) were compared at high and low pH for the enantioseparation of (+/-)-(2-PPA). At pH 7.5, poly-L-SUCLS, poly-L-SUCL, and (+/-)-(2-PPA) are negatively charged resulting in no enantioseparation. However, chiral separation was observed for (+/-)-(2-PPA) using poly-L-SUCLS at low pH (pH 2.00) at which the analyte is neutral. The comparison of chiral separation of anionic and cationic surfactants demonstrates that the electrostatic interaction between the acidic analyte and cationic micelle plays a profound role in enantioseparation.  相似文献   

6.
Poly sodium N-undecyl leucine-leucine (poly SULL) is used as a diagnostic tool to investigate chiral molecular interactions via electrokinetic chromatography (EKC). Poly SULL has two chiral centers which are defined by two asymmetric carbons. Each chiral center of poly SULL can have two possible configurations (D or L). Consequently, four different optical configurations are possible within the surfactant molecule (L-L, D-D, L-D, and D-L). In this study, five chiral analytes of various charge states and hydrophobicities were used to investigate the role of electrostatic interactions and hydrophobicity on chiral recognition with polymeric dipeptide surfactants. These studies lead to a proposed hypothesis for interaction of the analytes with dipeptide surfactants. The hypothesis was tested and the contribution of the double chiral centers to this interaction was evaluated by use of two dipeptide surfactants in which one chiral amino acid is replaced by an achiral amino acid glycine, i.e., poly sodium N-undecyl L-leucine-glycine (poly L-SULG) and poly sodium N-undecyl L-glycine-leucine (poly L-SUGL). The results reported here provide new insights into the mechanism for chiral recognition of select chiral analytes by use of polymeric chiral surfactants.  相似文献   

7.
Zu C  Brewer BN  Wang B  Koscho ME 《Analytical chemistry》2005,77(15):5019-5027
Derivatives of the chiral selector N-(3,5-dinitrobenzoyl)leucine were prepared and used as chiral selectors for enantiomer discrimination in single-stage electrospray ionization mass spectrometric experiments. The chiral selectors were designed to remove the ionization site from the sites required for effective chiral recognition. Addition of a chiral analyte to a solution of the two pseudoenantiomeric chiral selectors, which differ in absolute stereochemistry and the length of the tether connecting the tertiary amine site used for ionization via protonation and the rest of the chiral selector, affords selector-analyte complexes in the electrospray ionization mass spectrum where the ratio of these complexes is dependent on the enantiomeric composition of the analyte. The relationship between the ratio of the selector-analyte complexes in the electrospray ionization mass spectrum and the enantiomeric composition of the analyte can be used to relate the extent of enantioselectivity that is being observed and for quantitative enantiomeric composition determinations. Investigations into the scope and limitations of this method, plus a comparison to the enantioselectivities observed by chiral HPLC using a N-(3,5-dinitrobenzoyl)leucine-derived chiral stationary phase, is presented.  相似文献   

8.
This paper describes the application of stereoselective antibodies as tailor-made chiral selectors for the separation of enantiomers in HPLC under isocratic conditions. Stereoselective monoclonal antibodies to D- and L-alpha-amino acids, raised against protein conjugates of p-amino-D- and L-phenylalanine, were immobilized on a synthetic high-flow-through support material and used for rapid enantiomer separation of a number of amino acids at flow rates between 0.1 and 10 mL/min. Since separations could be performed in a mild buffer, column lifetime considerably exceeded that of classical immunoaffinity systems. Using an anti-D-amino acid antibody as chiral selector, the L-enantiomers eluted with the void volume, while the D-enantiomers eluted second. Inverted elution orders were obtained on chiral stationary phases prepared from an anti-L-amino acid antibody. These results demonstrate, for the first time, that antibody-based chiral stationary phases are useful for routine enantiomer separation under true high-performance chromatographic conditions.  相似文献   

9.
Development of chiral selectors (SOs) is important both for understanding chiral molecular recognition processes and for their use in the separation of chiral species (selectands). Their evaluation by chromatographic procedures (e.g., as chiral stationary phase) can, however, be time-consuming. In this respect, electrospray ionization-MS (ESI-MS) is tested here as a possible alternative for screening enantioselective binding by SOs. The set of well-characterized cinchona alkaloid SOs are investigated with respect to their enantioselective binding to a set of model enantiomers, dinitrobenzoyl-(R)- and dinitrobenzoyl-(S)-leucine. MS-based enantioselectivity values from normalized gas-phase ion abundances for the diastereomeric complexes are compared empirically to chromatographic (HPLC) enantioselectivity results and shown to be consistent. Investigations into the fundamentals of measuring unbiased enantioselectivity values in the limit of dilute solution by correlation between experimental and modeled theoretical data are shown. Titration experiments are used to extract binding constants and are compared with published calorimetric (ITC) data. Results show that while the magnitude of binding affinities determined for various diastereomeric complexes is attenuated, the relative ranking and stereochemical preference in binding are consistently reproduced. This work represents a fundamental study of solution- versus gas-phase correlation for enantioselective systems by ESI-MS and indicates that, although not all questions and assumptions can be clearly engaged, for these enthalpically driven binding systems, the relative degree of binding affinity and selectivity is preserved.  相似文献   

10.
Preparation and evaluation of proline-based chiral columns   总被引:2,自引:0,他引:2  
Huang J  Zhang P  Chen H  Li T 《Analytical chemistry》2005,77(10):3301-3308
Chiral stationary phases made of readily available proline peptides were prepared and evaluated for general chiral separation. With the proper structural elements, these columns demonstrated broad chiral selectivity. Among the 53 analytes tested, a tetraproline column resolved 31. The separations achieved for these analytes are comparable to those achieved on Whelk O2 column, while still inferior to those achieved on Daicel AD-H and OD-H columns. Number of proline units proves important for chiral recognition, because a control column made with a single proline unit is largely ineffective.  相似文献   

11.
Bluhm LH  Wang Y  Li T 《Analytical chemistry》2000,72(21):5201-5205
An alternative process for the analysis of mixture library components for their potential as selectors for chiral chromatography is described. The procedure involves the immobilization of each enantiomer of the target racemic analyte to silica gel, followed by incubation of each resulting stationary phase with a mixture library. The adsorbed library components on the two stationary phases are then analyzed by reversed-phase liquid chromatography. A comparison of the resulting two chromatograms is made. Any peak of identical retention time but with a significant difference in intensity in the two chromatograms indicates that this component is most likely a chiral selector. Its chemical structure is then determined by LC-MS or LC-MS-MS. This new screening method significantly increases the efficiency of chiral selector determination by eliminating the need for multilibrary syntheses, as opposed to our previous method. This technique should also allow for the screening of much larger libraries as compared to our previous work.  相似文献   

12.
A library of 36 L-amino acid anilides, which are potential selectors for chiral HPLC, was synthesized in solution and attached to functionalized macroporous polymer beads. The best selector from the library was identified by a deconvolution process using the HPLC separation of several racemic N-(3,5-dinitrobenzoyl)-alpha-amino acid alkylamides as a probe. In each deconvolution step, a series of chiral stationary phases (CSPs) containing a subset of the amino acid anilide selector library was screened for enantioselectivity. After the best CSP was chosen, the library was further deconvoluted until the single best selector was found. The highest selectivity was obtained with a L-proline-1-indananilide that exhibited alpha values up to 23 under normal-phase HPLC conditions. In addition, six CSPs were prepared using individual selectors from the library, and screening results indicate that the deconvolution process indeed led to the most selective receptor.  相似文献   

13.
Gong Y  Lee HK 《Analytical chemistry》2003,75(6):1348-1354
Two novel types of substituted cyclam-capped beta-cyclodextrin (beta-CD)-bonded silica particles have been prepared and used as chiral stationary phases in capillary electrochromatography (CEC). The two stationary phases have a chiral selector with three recognition sites: beta-CD, cyclam, and the latter's sidearm. They exhibit excellent enantioselectivities in CEC for a wide range of compounds as a result of the cooperative functioning of the anchored beta-CD and cyclam. After inclusion of the metal ion (Ni2+) from the running buffer into the substituted cyclams and their sidearm ligands, the bonded stationary phases become positively charged and can provide extra electrostatic interactions with ionizable solutes and enhance the dipolar interactions with some polar neutral solutes. This enhances the host-guest interaction with some solutes and improves chiral recognition and enantioselectivity. These new types of stationary phases exhibit great potential for fast chiral separations in CEC.  相似文献   

14.
Resolution of racemic tert-butyl-1-(2-methylnaphthyl)-phosphine oxide 1, a chiral phosphorus compound, was achieved using selectors developed from a small peptide library. Separation factors as high as 3.2 were observed. The library consists of 81 peptide-based potential chiral selectors on polymeric synthesis resins. The linker needed to immobilize the identified chiral selectors onto silica gel proved important in the chiral separation; a longer linker provided a significantly higher separation factor in this study.  相似文献   

15.
Liu Y  Pietrzyk DJ 《Analytical chemistry》2000,72(24):5930-5938
Macroporous poly(styrene-divinylbenzene) (PSDVB), PRP-1, a reversed-phase adsorbent, and PSDVB-based strong acid cation exchangers and strong base and weak base anion exchangers were evaluated as stationary phases for capillary electrochromatography (CEC). Electroosmotic flow (EOF) for adsorbent and exchanger packed fused-silica capillaries for acetone as the marker increases with increasing ion exchange capacity, buffer organic solvent concentration, and applied voltage, is nearly independent of pH, and decreases with increased buffer ionic strength. For anion exchangers, EOF is reversed. Thiourea, acetone, acrylamide, nitromethane, propanal, and acetic acid were evaluated as EOF markers and undergo weak interaction with the PSDVB-based stationary phases. EOF in a basic buffer is greater than or equal to silica-based C-18 and cation exchanger packed capillaries. For an acidic buffer, EOF for a PRP-1 capillary is almost twice the C-18 packed capillary. As analyte hydrophobicity increases, retention and migration time increases for the PSDVB-based stationary phases. As exchange capacity increases, availability of the polymeric matrix for analyte partitioning decreases, causing analyte migration time to decrease. Increasing buffer organic solvent concentration decreases analyte retention. The PSDVB-based stationary phases provide good resolving power and reproducibility and are applicable to the CEC separation of neutral, weakly acidic, and basic analytes. Efficiency, however, is less than obtained with silica-based stationary phases. Because of stability in a strong acid buffer, the CEC separation of weak acids, where dissociation is suppressed, and weak bases as cations is possible. Separations of short-chain alkyl aldehydes, methyl ketones, aromatic hydrocarbons, substituted benzene derivatives, and short-chain carboxylic acids are described.  相似文献   

16.
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.  相似文献   

17.
Room-temperature ionic liquids are a class of non-molecular ionic solvents with low melting points. Their properties have the potential to be especially useful as stationary phases in gas-liquid chromatography (GLC). A series of common ionic liquids were evaluated as GLC stationary phases. It was found that many of these ionic liquids suffer from low thermal stability and possess unfavorable retention behavior for some classes of molecules. Two new ionic liquids were engineered and synthesized to overcome these drawbacks. The two new ionic liquids (1-benzyl-3-methylimidazolium trifluoromethanesulfonate and 1-(4-methoxyphenyl)-3-methylimidazolium trifluoromethanesulfonate) are based on "bulky" imidazolium cations with trifluoromethanesulfonate anions. Their solvation characteristics were evaluated using the Abraham solvation parameter model and correlations made between the structure of the cation and the degree to which the ionic liquids retain certain analytes. The new ionic liquids have good thermal stability up to 260 degrees C, provide symmetrical peak shapes, and because of their broad range of solvation-type interactions, exhibit dual-nature selectivity behavior. In addition, the ionic liquid stationary phases provided different retention behavior for many analytes compared to a commercial methylphenyl polysiloxane GLC stationary phase. This difference in selectivity is due to the unique solvation characteristics of the ionic liquids and makes them very useful as dualnature GLC stationary phases.  相似文献   

18.
This work details a study whereby the characterization of chiral selectors and identification of optimal separation conditions is evaluated by steady-state fluorescence anisotropy measurements. Earlier studies in our laboratory have shown fluorescence anisotropy to be an effective tool in evaluating chiral recognition, and in this study, the feasibility of characterizing chiral separation systems by the technique is evaluated. Four chiral selectors were examined under various conditions to explore correlation between chiral separation ability and differences in the steady-state fluorescence anisotropy of the enantiomers measured under similar conditions. A good correlation between the fluorescence anisotropy data and separation data was observed with R2 values ranging from 0.9279 to 0.9959. The fluorescence anisotropy measurements were examined under conditions that mimicked chiral separation conditions and the feasibility of a priori optimization of chiral separations is discussed.  相似文献   

19.
A new technique is demonstrated for the simultaneous concentration and high-resolution separation of chiral compounds. With temperature gradient focusing, a combination of a temperature gradient, an applied electric field, and a buffer with a temperature-dependent ionic strength is used to cause analytes to move to equilibrium, zero-velocity points along a microchannel or capillary. Different analytes are thus separated spatially and concentrated in a manner that resembles isoelectric focusing but that is applicable to a greater variety of analytes including small chiral drug molecules. Chiral separations are accomplished by the addition of a chiral selector, which causes the different enantiomers of an analyte to focus at different positions along a microchannel or capillary. This new technique is demonstrated to provide high performance in a number of areas desirable for chiral separations including rapid separation optimization and method development, facile reversal of peak order (desirable for analysis of trace enantiomeric impurities), and high resolving power (comparable to capillary electrophoresis) in combination with greater than 1000-fold concentration enhancement enabling improved detection limits. In addition, chiral temperature gradient focusing allows for real-time monitoring of the interaction of chiral analyte molecules with chiral selectors that could potentially be applied to the study of other molecular interactions. Finally, unlike CE, which requires long channels or capillaries for high-resolution separations, separations of equivalent resolution can be performed with TGF in very short microchannels (mm); thus, TGF is inherently much more suited to miniaturization and integration into lab-on-a-chip-devices.  相似文献   

20.
《晶体工程》2001,4(2-3):113-118
The importance of obtaining reliable detection systems for enantiomers' assays increases with the necessity of chiral discrimination between the enantiomers of raw materials from the pharmaceutical industry. The utilization of electrochemical sensors in molecular recognition of chiral substances becomes a very accurate and precise alternative for the structural analysis as well as for the chromatographic techniques. The reliability of the response characteristics as well as of the analytical information obtained by using electrochemical sensors is strictly correlated with the design of the sensors. The most reliable design is that of carbon paste based sensors; this design was adopted for the construction of potentiometric, enantioselective membrane electrodes as well as for the construction of the amperometric biosensors, and immunosensors. However, it is also necessary to look for more reliable chiral selectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号